scholarly journals VALIDATION AND ANALYSIS OF DIALLYL DISULFIDE AND DIALLYL TRISULFIDE IN GARLIC (ALLIUM SATIVUM L.) USING GAS CHROMATOGRAPHY

Author(s):  
HARMITA HARMITA ◽  
HERMAN SURYADI ◽  
LIDWINA DEVIANI LIKASA

Objective: The purpose of this research was to optimize and validate a method for measuring the levels of diallyl disulfide (DADS) and diallyl trisulfide(DATS) in garlic and single clove garlic.Methods: The analysis was performed using gas chromatography (GC) equipped with an HP-1 column and a flame ionization detector. The initialcolumn temperature was set at 140°C and increased at 1°C/min to 180°C. The injector and detector temperatures were set to 200°C, the carrier gasflow rate was 0.80 mL/min, and the injection volume was 1.0 μL. The optimized conditions of analysis were then validated which included selectivity,linearity, accuracy, precision, limit of detection (LOD), and limit of quantification (LOQ).Results: Using the validated assay and a concentration range of 0.5–20 μg/mL, the coefficient of correlation (r) for DADS was 0.9999 and the LODand LOQ for DADS were 0.3063 μg/mL and 1.0210 μg/mL, respectively. Using the validated assay and a concentration range of 0.5–20 μg/mL, thecoefficient of correlation for DATS was 0.9999 and the LOD and LOQ for DATS were 0.1986 μg/mL and 0.6621 μg/mL, respectively. The percentage ofrecovery was in the range of 98.05–101.76% and coefficient of variation ≤ 2%.Conclusion: This GC method accurately measures the levels of DADS and DATS in garlic.

Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6914
Author(s):  
Maria Suely Siqueira Ferraz ◽  
Lêda Rita D’Antonino Faroni ◽  
Fernanda Fernandes Heleno ◽  
Adalberto Hipólito de Sousa ◽  
Lucas Henrique Figueiredo Prates ◽  
...  

Bioinsecticides are regarded as important alternatives for controlling agricultural pests. However, few studies have determined the persistence of these compounds in stored grains. This study aimed at optimizing and validating a fast and effective method for extraction and quantification of residues of safrole (the main component of Piper hispidinervum essential oil) in cowpea beans. It also sought to assess the persistence of this substance in the grains treated by contact and fumigation. The proposed method used headspace solid-phase microextraction (HS-SPME) and gas chromatography with a flame ionization detector (GC/FID). Factors such as temperature, extraction time and type of fiber were assessed to maximize the performance of the extraction technique. The performance of the method was appraised via the parameters selectivity, linearity, limit of detection (LOD), limit of quantification (LOQ), precision, and accuracy. The LOD and LOQ of safrole were 0.0057 and 0.019 μg kg−1, respectively and the determination coefficient (R2) was >0.99. The relative recovery ranged from 99.26 to 104.85, with a coefficient of variation <15%. The validated method was applied to assess the persistence of safrole residue in grains, where concentrations ranged from 1.095 to 0.052 µg kg−1 (contact) and from 2.16 to 0.12 µg kg −1 (fumigation). The levels measured up from the fifth day represented less than 1% of the initial concentration, proving that safrole have low persistence in cowpea beans, thus being safe for bioinsecticide use. Thus, this work is relevant not only for the extraction method developed, but also for the possible use of a natural insecticide in pest management in stored grains.


Author(s):  
MUCHTARIDI MUCHTARIDI ◽  
Kurnia Megawati ◽  
Febrina Amelia Saputri ◽  
Mulyana Mulyana

Objective: The purpose of this study was to obtain a valid analytical method for determining the level of 2,5-hexanedione in the urine of oil industry workers. Methods: Gas Chromatography (GC) was employed to analyze 2,5-hexanedione in the urine. The analysis was done using HP-5 (Crosslinked methyl siloxane) capillary columns 30 m x 0.320 mm long, film thickness 0.25 μm. The temperature of the detector temperature was 300 °C, and the injector temperature was 250 °C. The helium gas flow rate was 2 ml/min. The detector was Flame Ionization Detection (FID). Parameters of system suitability test and validation were obtained. Results: This study results that the method of analysis 2,5-hexanedione in urine by Gas Chromatography (GC) confirm the requirements of the validation method with a linearity was 0.99963, accuracy was in the range of 99.16% to 114.13%, the precision with % coefficient of variation was 1.65% to 5.16%, % coefficient variation of specificity was 0.027%, limit of detection was 0.054 μg/ml and limit of quantification was 0.18 μg/ml. Conclusion: The proposed GC method meets the acceptance criteria of validation parameters and can be applied for routine analysis.


2021 ◽  
Vol 17 ◽  
Author(s):  
Fatang Yang ◽  
Xiaoyun Duan ◽  
Zhen Wang ◽  
Yuming Dong

Aims: To establish a rapid and simultaneous determination of multiple effective ingredients in anti-cold drugs. Background: Anti-cold drugs are stock medicines at home, and most anti-cold formulations are compound preparations. Although the active ingredients of compound preparations have significant effects on the treatment of colds, the excessive dosage or long-term use can produce a series of adverse reactions including dependence, liver and kidney function damage, digestive system reaction, blood system damage. Now, there are many mature methods for analyzing the active ingredients of anti-cold drugs. However, these methods may have shortcomings such as a long analysis time or a small number of analysis components. Objective: Establish a gas chromatography-flame ionization detector method for the simultaneous determination of six active ingredients including acetaminophen, dextromethorphan hydrobromide, pseudoephedrine hydrochloride, chlorpheniramine maleate, diphenhydramine hydrochloride, and caffeine in anti-cold drugs. Method: After the standard was accurately weighed, dissolved in ethanol, filtered by 0.22 μm membrane and ultrasonically degassed, the gas chromatograph was used for detection. After the actual sample was removed from the coating, ground and crushed, accurately weighed, dissolved in ethanol, filtered by 0.22 μm membrane and ultrasonically degassed, the gas chromatograph was used for detection. Result: The six components can be completely separated within 7.0min. This method has good sensitivity, precision, accuracy and recovery rate. Under the optimum testing conditions, the limit of detection was 0.360-2.50μg/mL, the limit of quantification was 1.20-8.30μg/mL. The calibration curves showed good linearity (R2≥0.9932) over the investigated concentration range between 1.20 and 400μg/mL. The recoveries were 89.2% to 109.2%. The RSD of intra-day precision was less than 1.0%. The RSD of inter-day precision was less than 3.2%. The established method was used to determine the ingredients of three anti-cold drugs on the market, and the results showed that the method can accurately determine the ingredients. Conclusion: The method can quickly and simultaneously determine multiple active ingredients in anti-cold medicines. Compared with the published methods in literatures, the proposed method has the advantages of fast, the number of analysis componentswide application range, convenience, low cost, etc. It provides a reference method for quality control of active ingredients of anti-cold drugs.


2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
Michael Uebelacker ◽  
Dirk W. Lachenmeier

Acetaldehyde (ethanal) is a genotoxic carcinogen, which may occur naturally or as an added flavour in foods. We have developed an efficient method to analyze the compound in a wide variety of food matrices. The analysis is conducted using headspace (HS) gas chromatography (GC) with flame ionization detector. Using a robot autosampler, the samples are digested in full automation with simulated gastric fluid (1 h at 37°C) under shaking, which frees acetaldehyde loosely bound to matrix compounds. Afterwards, an aliquot of the HS is injected into the GC system. Standard addition was applied for quantification to compensate for matrix effects. The precision of the method was sufficient (<3% coefficient of variation). The limit of detection was 0.01 mg/L and the limit of quantification was 0.04 mg/L. 140 authentic samples were analyzed. The acetaldehyde content in apples was  mg/kg, orange juice contained  mg/kg. The highest concentration was determined in a yoghurt (17 mg/kg). A first-exposure estimation resulted in a daily acetaldehyde intake of less than 0.1 mg/kg bodyweight from food, which is considerably lower than the exposures from alcohol consumption or tobacco smoking.


Sign in / Sign up

Export Citation Format

Share Document