Role of Padina gymnospora (Dictyotales, Phaeophyceae) cell walls in cadmium accumulation

Phycologia ◽  
2002 ◽  
Vol 41 (1) ◽  
pp. 39-48 ◽  
Author(s):  
Leonardo R. de Andrade ◽  
Marcos Farina ◽  
Gilberto M. Amado Filho
2021 ◽  
Author(s):  
Dong Li ◽  
Chunran Zhou ◽  
Jinling Ma ◽  
Yangliu Wu ◽  
Lu Kang ◽  
...  

Abstract Selenium (Se) can promote the growth and resistance of agricultural crops as fertilizers, while the role of nano-selenium (nano-Se) against Cd remains unclear in pepper plants (Capsicum annuum L.). Biofortification with nano-Se observably restored Cd stress by decreasing the level of Cd in plant tissues and boosting the accumulation in biomass. The Se compounds transformed by nano-Se were primarily in the form of SeMet and MeSeCys in pepper tissues. Differential metabolites and the genes of plant signal transduction and lignin biosynthesis were measured by employing transcriptomics and determining target metabolites. The number of lignin-related genes (PAL, CAD, 4CL, and COMT) and contents of metabolites (sinapyl alcohol, phenylalanine, p-coumaryl alcohol, caffeyl alcohol, and coniferaldehyde) were remarkably enhanced by treatment with Cd1Se0.2, thus, maintaining the integrity of cell walls in the roots. It also enhanced signal transduction by plant hormones and responsive resistance by inducing the biosynthesis of genes (BZR1, LOX3, and NCDE1) and metabolites (brassinolide, abscisic acid, and jasmonic acid) in the roots and leaves. In general, this study can enable a better understanding of the protective mechanism of nano-Se in improving the capacity of plants to resist environmental stress.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Dong Li ◽  
Chunran Zhou ◽  
Jinling Ma ◽  
Yangliu Wu ◽  
Lu Kang ◽  
...  

AbstractSelenium (Se) can promote the growth and resistance of agricultural crops as fertilizers, while the role of nano-selenium (nano-Se) against Cd remains unclear in pepper plants (Capsicum annuum L.). Biofortification with nano-Se observably restored Cd stress by decreasing the level of Cd in plant tissues and boosting the accumulation in biomass. The Se compounds transformed by nano-Se were primarily in the form of SeMet and MeSeCys in pepper tissues. Differential metabolites and the genes of plant signal transduction and lignin biosynthesis were measured by employing transcriptomics and determining target metabolites. The number of lignin-related genes (PAL, CAD, 4CL, and COMT) and contents of metabolites (sinapyl alcohol, phenylalanine, p-coumaryl alcohol, caffeyl alcohol, and coniferaldehyde) were remarkably enhanced by treatment with Cd1Se0.2, thus, maintaining the integrity of cell walls in the roots. It also enhanced signal transduction by plant hormones and responsive resistance by inducing the biosynthesis of genes (BZR1, LOX3, and NCDE1) and metabolites (brassinolide, abscisic acid, and jasmonic acid) in the roots and leaves. In general, this study can enable a better understanding of the protective mechanism of nano-Se in improving the capacity of plants to resist environmental stress.


2012 ◽  
Vol 366 (1-2) ◽  
pp. 425-432 ◽  
Author(s):  
Junliang Xin ◽  
Baifei Huang ◽  
Junzhi Yang ◽  
Zhongyi Yang ◽  
Jiangang Yuan ◽  
...  

2014 ◽  
Vol 15 (5) ◽  
pp. 1727-1736 ◽  
Author(s):  
Sarah N. Kiemle ◽  
Xiao Zhang ◽  
Alan R. Esker ◽  
Guillermo Toriz ◽  
Paul Gatenholm ◽  
...  
Keyword(s):  

1981 ◽  
Vol 59 (2) ◽  
pp. 251-263 ◽  
Author(s):  
X. Mourichon ◽  
G. Sallé

An electron microscopic study was performed on haustoria of Phytophthora cactorum (L. et C.) Schroeter developed in tissues of two cultivars of apple fruits: a susceptible variety ('Golden delicious') and a resistant one ('Belle de Boskoop'). Ultrastructure of intercellular hyphae and some aspects of their penetration between contiguous host cells were described. A light dissolution of the host cell walls was observed. Ontogenic investigations indicated that in the susceptible host, the wall of the fungal haustoria was covered with a dense-stained extrahaustorial matrix. Its origin and its polysaccharide nature were demonstrated. On the other hand, the resistant host developed, immediately after the inoculation, a papilla which gave rise, later on, to a sheath enclosing adult haustoria. The role of these callosic structures in the phenomenon of resistance was discussed.


1998 ◽  
Vol 63 (3) ◽  
pp. 359-363 ◽  
Author(s):  
D. J. Schrier ◽  
R. C. Schimmer ◽  
C. M. Flory ◽  
D. K.-L. Tung ◽  
P. A. Ward
Keyword(s):  

2005 ◽  
Vol 52 (4) ◽  
pp. 797-802
Author(s):  
Lucyna Pawłowska-Cwiek ◽  
Ryszard Pado

This work was designed to find the cause of the delay in hydrogen sulfide dissimilation in Desulfotomaculum acetoxidans DSM 771, which is dependent on the sulfate uptake. This bacterium grown without addition of any aromatic compound was shown by spectrum analysis with the methylene method to contain hydroxy-benzoate derivatives. The presence of these compounds was confirmed by HPLC in fractions obtained from cell walls after 15 days of culture. The test with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt seemed to indicate the presence of peroxidase, which probably oxidized benzoate to its hydroxy derivatives. The test with 5-sulfo-salicylic acid proved the ability of the investigated strain to utilize arylsulfates and to reduce sulfate group to hydrogen sulfide. On the basis of the above data, we propose the following sequence of reactions: 1, benzoate secretion; 2, benzoate hydroxylation; 3, sulfonation of hydroxy-benzoate derivatives.


Sign in / Sign up

Export Citation Format

Share Document