protective mechanism
Recently Published Documents





2022 ◽  
A. William Rutherford ◽  
Andrea Fantuzzi ◽  
Dario Piano ◽  
Patrycja Haniewicz ◽  
Domenica Farci ◽  

In thylakoid membranes, Photosystem II monomers from the stromal lamellae contain the subunits PsbS and Psb27 (PSIIm-S/27), while Photosystem II monomers from granal regions (PSIIm) lack these subunits. Here, we have isolated and characterised these two types of Photosystem II complexes. The PSIIm-S/27 showed enhanced fluorescence, the near-absence of oxygen evolution, as well as limited and slow electron transfer from QA to QB compared to the near-normal activities in the granal PSIIm. However, when bicarbonate was added to the PSIIm-S/27, water splitting and QA to QB electron transfer rates were comparable to those in granal PSIIm. The findings suggest that the binding of PsbS and/or Psb27 inhibits forward electron transfer and lowers the binding affinity for the bicarbonate. This can be rationalized in terms of the recently discovered photoprotection role played by bicarbonate binding via the redox tuning of the QA/QA?- couple, which controls the charge recombination route, and this limits chlorophyll triplet mediated 1O2 formation (Brinkert K et al. (2016) Proc Natl Acad Sci U S A. 113(43):12144-12149). These findings suggest that PSIIm-S/27 is an intermediate in the assembly of PSII in which PsbS and/or Psb27 restrict PSII activity while in transit, by using a bicarbonate-mediated switch and protective mechanism.

Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 293
Maria Garofalo ◽  
Cecilia Pandini ◽  
Matteo Bordoni ◽  
Emanuela Jacchetti ◽  
Luca Diamanti ◽  

Superoxide dismutase 1 (SOD1) is one of the causative genes associated with amyotrophic lateral sclerosis (ALS), a neurodegenerative disorder. SOD1 aggregation contributes to ALS pathogenesis. A fraction of the protein is localized in the nucleus (nSOD1), where it seems to be involved in the regulation of genes participating in the oxidative stress response and DNA repair. Peripheral blood mononuclear cells (PBMCs) were collected from sporadic ALS (sALS) patients (n = 18) and healthy controls (n = 12) to perform RNA-sequencing experiments and differential expression analysis. Patients were stratified into groups with “high” and “low” levels of nSOD1. We obtained different gene expression patterns for high- and low-nSOD1 patients. Differentially expressed genes in high nSOD1 form a cluster similar to controls compared to the low-nSOD1 group. The pathways activated in high-nSOD1 patients are related to the upregulation of HSP70 molecular chaperones. We demonstrated that, in this condition, the DNA damage is reduced, even under oxidative stress conditions. Our findings highlight the importance of the nuclear localization of SOD1 as a protective mechanism in sALS patients.

2022 ◽  
Vol 12 ◽  
Yashvardhan Batta ◽  
Cody King ◽  
John Johnson ◽  
Natasha Haddad ◽  
Myriam Boueri ◽  

COVID-19 patients with pre-existing cardiovascular conditions are at greater risk of severe illness due to the SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) virus. This review evaluates the highest risk factors for these patients, not limited to pre-existing hypertension, cardiac arrhythmias, hypercoagulation, ischemic heart disease, and a history of underlying heart conditions. SARS-CoV-2 may also precipitate de novo cardiac complications. The interplay between existing cardiac conditions and de novo cardiac complications is the focus of this review. In particular, SARS-CoV-2 patients present with hypercoagulation conditions, cardiac arrhythmias, as significant complications. Also, cardiac arrhythmias are another well-known cardiovascular-related complication seen in COVID-19 infections and merit discussion in this review. Amid the pandemic, myocardial infarction (MI) has been reported to a high degree in SARS-CoV-2 patients. Currently, the specific causative mechanism of the increased incidence of MI is unclear. However, studies suggest several links to high angiotensin-converting enzyme 2 (ACE2) expression in myocardial and endothelial cells, systemic hyper-inflammation, an imbalance between myocardial oxygen supply and demand, and loss of ACE2-mediated cardio-protection. Furthermore, hypertension and SARS-CoV-2 infection patients’ prognosis has shown mixed results across current studies. For this reason, an in-depth analysis of the interactions between SARS-CoV2 and the ACE2 cardio-protective mechanism is warranted. Similarly, ACE2 receptors are also expressed in the cerebral cortex tissue, both in neurons and glia. Therefore, it seems very possible for both cardiovascular and cerebrovascular systems to be damaged leading to further dysregulation and increased risk of mortality risk. This review aims to discuss the current literature related to potential complications of COVID-19 infection with hypertension and the vasculature, including the cervical one. Finally, age is a significant prognostic indicator among COVID-19 patients. For a mean age group of 70 years, the main presenting symptoms include fever, shortness of breath, and a persistent cough. Elderly patients with cardiovascular comorbidities, particularly hypertension and diabetes, represent a significant group of critical cases with increased case fatality rates. With the current understanding of COVID-19, it is essential to explore the mechanisms by which SARS-CoV-2 operates to improve clinical outcomes for patients suffering from underlying cardiovascular diseases and reduce the risk of such conditions de novo.

2022 ◽  
Supriya Joshi ◽  
Prerna Bhardwaj ◽  
Afroz Alam

Postharvest losses from fungal pathogens to essential fruits and vegetables are enormous and alarming. Orthodox synthetic fungicides are being used as a regular practice to restrict these losses. However, now by knowing the hazards of these chemical-based fungicides, the situation demands alternative green technology. Consequently, many angiosperms plant extracts have been evaluated for their antifungal nature and achieved substantial success. However, the second most prevalent flora on land, i.e. bryophytes, have been scarcely used and somewhat remain neglected besides their remarkable thallus organization, water relations and antimicrobial potential. For postharvest fungus control, these bryophytes, the first land plants' extracts to be researched and promoted due to concerns about drug resistance, nephrotoxicity and biomagnification related to current synthetic fungicides. Since these amphibious plants have their unique protective mechanism against fungal or bacterial attacks due to their unique phytochemistry, therefore have great potential to be used as eco-friendly fungicides. Considering these factors, this article seeks to direct the attention of interested researchers toward the relatively accessible but vast underutilised bryo-diversity to investigate their remarkable potential as postharvest antifungal agents first in laboratories and then on a commercial scale in the future.

2022 ◽  
Vol 8 ◽  
Yujian Huang ◽  
Changbing Zheng ◽  
Bo Song ◽  
Li Wang ◽  
Hao Xiao ◽  

Deoxynivalenol (DON) reduces growth performance and damage intestinal function, and resveratrol (RES) has positive effects on growth performance and intestinal function. The purpose of this study was to investigate the protective mechanism of RES in vitro and vivo challenged with DON. The results showed that dietary supplementation with DON significantly increase the mRNA expression levels of mitophagy- related genes, and protein level for PINK1, Parkin, Beclin-1, Lamp, Atg5, Map1lc, Bnip3, Fundc1, Bcl2l1 and SQSTMS1 (P < 0.05), while supplementation with both RES and DON decreased those indexes in the ileum. Besides DON significantly decreased protein level for Pyruvate Dehydrogenase, Cytochrome c, MFN1, OPA1, and PHB1 (P < 0.05), while supplementation with both RES and DON increased protein level for PHB1, SDHA, and VDAC in the ileum. Moreover, in vitro, we found that DON significantly decreased mitochondrial respiration (P < 0.05), while RES + DON increased the rate of spare respiratory capacity. Also, DON significantly decreased total NAD and ATP (P < 0.05), while RES + DON increased the total NAD and ATP. These results indicate that RES may ameliorates the intestinal damage challenged with deoxynivalenol through mitophagy in weaning piglets.

2022 ◽  
Vol 2022 ◽  
pp. 1-7
Suhua Li ◽  
Xuan Huang ◽  
Shun Wang ◽  
Xueqian Chu ◽  
Munire Aierken

Background. Ischemia-reperfusion acute kidney injury (I/R AKI) is a severe kidney disease with high mortality and morbidity. This study aimed to explore the protective mechanism of glutamine (GLN) against I/R AKI. Methods.The I/R AKI rat model was established, and HE staining of kidney tissue and serum creatinine (SCr) and blood urea nitrogen (BUN) detection were performed. The miRNAs were sequenced by high throughput in rat kidney tissue samples. Differentially expressed miRNAs (DEmiRs) between the I/R group and I/R + GLN group were screened, and enrichment analysis for target genes of DEmiRs was performed. Meanwhile, human HK-2 cells were cultured, and an I/R model was established to verify the expression of DEmiRs. Results. Compared with the I/R group, the SCr and BUN levels at each time point were lower in the I/R + GLN group. Vacuolar degeneration of renal tubules in the I/R + GLN group was significantly reduced. In the 104 DEmiRs, we selected miR-132-5p, miR-205, and miR-615 as key miRNAs. KEGG analysis showed that the Notch signaling pathway, PI3K-Akt signaling pathway, and cGMP signaling pathway were mainly related to the GLN against I/R. qRT-PCR verified the downregulation of miR-205 in the I/R group, compared to the sham and I/R + GLN group. The I/R model was established with HK-2 cells, and the expression of miR-132-5p and miR-205 was decreased. Conclusion. GLN reduced I/R-induced AKI. There were significant differences between miRNAs expression in I/R after GLN treatment. The process of GLN against I/R-induced AKI may be related to the Notch and PI3K-Akt signaling pathway.

PeerJ ◽  
2022 ◽  
Vol 10 ◽  
pp. e12759
Linluo Zhang ◽  
Changqing Li ◽  
Ling Fu ◽  
Zhichao Yu ◽  
Gengrui Xu ◽  

Catalpol significantly reduces triptolide-induced hepatotoxicity, which is closely related to autophagy. The aim of this study was to explore the unclear protective mechanism of catalpol against triptolide. The detoxification effect of catalpol on triptolide was investigated in HepaRG cell line. The detoxification effects were assessed by measuring cell viability, autophagy, and apoptosis, as well as the endoplasmic reticulum stress protein and mRNA expression levels. We found that 5–20 µg/L triptolide treatments increased the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH), as well as the expression of autophagy proteins including LC3 and Beclin1. The expression of P62 was downregulated and the production of autophagosomes was increased, as determined by transmission electron microscope and monodansylcadaverine staining. In contrast, 40 µg/L catalpol reversed these triptolide-induced changes in the liver function index, autophagy level, and apoptotic protein expression, including Cleaved-caspase3 and Cleaved-caspase9 by inhibiting excessive autophagy. Simultaneously, catalpol reversed endoplasmic reticulum stress, including the expression of PERK, which regulates autophagy. Moreover, we used the PERK inhibitor GSK2656157 to prove that the PERK-ATF4-CHOP pathway of the unfolded protein response is an important pathway that could induce autophagy. Catalpol inhibited excessive autophagy by suppressing the PERK pathway. Altogether, catalpol protects against triptolide-induced hepatotoxicity by inhibiting excessive autophagy via the PERK-ATF4-CHOP pathway. The results of this study are beneficial to clarify the detoxification mechanism of catalpol against triptolide-induced hepatotoxicity and to promote the application of triptolide.

2022 ◽  
Erica Werner ◽  
Avanti Gokhale ◽  
Molly Ackert ◽  
Chongchong Xu ◽  
Zhexing Wen ◽  

Manganese exposure causes a parkinsonian disorder, manganism, which is viewed as a neurodegenerative disorder minimally related to Parkinson s disease. We tested this hypothesis asking if there is phenotypic and mechanistic overlap between two genetic models of these diseases. We targeted for study the plasma membrane manganese efflux transporter SLC30A10 and the mitochondrial Parkinson gene PARK2. We performed comparative molecular systems studies and found that SLC30A10 and PARK2 mutations compromised the mitochondrial RNA granule as well as mitochondrial transcript processing. These shared RNA granule defects led to impaired assembly and function of the mitochondrial respiratory chain. Notably, CRISPR gene editing of subunits of the mitochondrial RNA granule, FASTKD2 and DHX30, or pharmacological inhibition of mitochondrial transcription-translation were protective rather than deleterious for survival of cells acutely exposed to manganese. Similarly, adult Drosophila mutants with defects in the mitochondrial RNA granule component scully were safeguarded from manganese-induced mortality. We conclude that the downregulation of the mitochondrial RNA granule function is a protective mechanism for acute metal toxicity. We propose that initially adaptive mitochondrial dysfunction caused by manganese exposure, when protracted, causes neurodegeneration

2022 ◽  
Vol 12 ◽  
Radeesha Jayewickreme ◽  
Tianyang Mao ◽  
William Philbrick ◽  
Yong Kong ◽  
Rebecca S. Treger ◽  

Endogenous retroviruses (ERVs) are genomic sequences that originated from retroviruses and are present in most eukaryotic genomes. Both beneficial and detrimental functions are attributed to ERVs, but whether ERVs contribute to antiviral immunity is not well understood. Here, we used herpes simplex virus type 2 (HSV-2) infection as a model and found that Toll-like receptor 7 (Tlr7-/-) deficient mice that have high systemic levels of infectious ERVs are protected from intravaginal HSV-2 infection and disease, compared to wildtype C57BL/6 mice. We deleted the endogenous ecotropic murine leukemia virus (Emv2) locus on the Tlr7-/- background (Emv2-/-Tlr7-/-) and found that Emv2-/-Tlr7-/- mice lose protection against HSV-2 infection. Intravaginal application of purified ERVs from Tlr7-/- mice prior to HSV-2 infection delays disease in both wildtype and highly susceptible interferon-alpha receptor-deficient (Ifnar1-/-) mice. However, intravaginal ERV treatment did not protect Emv2-/-Tlr7-/- mice from HSV-2 disease, suggesting that the protective mechanism mediated by exogenous ERV treatment may differ from that of constitutively and systemically expressed ERVs in Tlr7-/- mice. We did not observe enhanced type I interferon (IFN-I) signaling in the vaginal tissues from Tlr7-/- mice, and instead found enrichment in genes associated with extracellular matrix organization. Together, our results revealed that constitutive and/or systemic expression of ERVs protect mice against vaginal HSV-2 infection and delay disease.

2022 ◽  
Vol 2022 ◽  
pp. 1-9
Guoping Yang ◽  
Guofu Wang ◽  
Liting Liu ◽  
Kaixin Zhai ◽  
Xiaowen Chen ◽  

Purpose. This research was designed to investigate the protective effect of rifampicin (RIF) loaded by N-(2-hydroxypropyl) methylacrylamide- (HPMA-) polylactic acid (PLA) nanopolymer on macrophages infected with Mycobacterium tuberculosis (MTB). Methods. We first induced H37Rv to infect macrophages to build a cell model. Then, the HPMA-PLA nanopolymer loaded with RIF was prepared to treat MTB-infected macrophages. The macrophage activity was tested by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, the nitric oxide (NO) in cells was measured through Griess reagent, and the bacterial activity of MTB was observed via the colony-forming unit (CFU) assay. The inflammation-related factors in cells were detected via the enzyme-linked immunosorbent assay (ELISA), the apoptosis of macrophages was examined via flow cytometry, and the expression of apoptosis-related proteins was determined by western blot (WB). Results. HPMA-PLA had no obvious toxicity to macrophages. The expression of NO and inflammatory factors in macrophages infected with MTB increased significantly, but the apoptosis rate was not significantly different from that of uninfected cells. However, after treatment with HPMA-PLA-RIF or free RIF, the inflammatory reaction of infected cells was inhibited, the expression of NO was decreased, the apoptosis rate was increased, and the bacterial activity in cells was decreased, with statistically significant differences; moreover, HPMA-PLA-RIF was more effective than free RIF. Conclusions. HPMA-PLA-RIF has a high protective effect on macrophages infected with MTB, with high safety. Its protective mechanism is at least partly through inhibiting the production of NO and inflammatory response, which can inhibit bacterial activity and induce cell apoptosis.

Sign in / Sign up

Export Citation Format

Share Document