PEGylated single-walled carbon nanotubes as co-adjuvants enhance expression of maturation markers in monocyte-derived dendritic cells

Nanomedicine ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 171-188
Author(s):  
Naghmeh Hadidi ◽  
Zarin Sharifnia ◽  
Atefeh Eteghadi ◽  
Mohammad Ali Shokrgozar ◽  
Nariman Mossafa

Aim: This study investigated the application of phospholipid-PEGylated single-walled carbon nanotubes (PL-PEG-SWCNTs) as a safe co-adjuvant for the commercial recombinant hepatitis B virus vaccine to enhance induction of monocyte-derived dendritic cells (MDDCs) differentiation and activation in vitro as an immune response initiator cell to prompt a long-term immune response after a single dose injection. Methods: Immature MDDCs were exposed to PL-PEG-SWCNTs alone and in combination with hepatitis B vaccine. Results & conclusion: Study results confirm the enhanced expression of maturation markers in human immature MDDCs after PL-PEG-SWCNT exposure. The results suggest that PL-PEG-SWCNT is an efficient co-adjuvant for the commercial recombinant hepatitis B virus vaccine to enhance dendritic cell response stimulation in vitro.

Biology ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 171
Author(s):  
Michael González-Durruthy ◽  
Riccardo Concu ◽  
Juan M. Ruso ◽  
M. Natália D. S. Cordeiro

Single-walled carbon nanotubes can induce mitochondrial F0F1-ATPase nanotoxicity through inhibition. To completely characterize the mechanistic effect triggering the toxicity, we have developed a new approach based on the combination of experimental and computational study, since the use of only one or few techniques may not fully describe the phenomena. To this end, the in vitro inhibition responses in submitochondrial particles (SMP) was combined with docking, elastic network models, fractal surface analysis, and Nano-QSTR models. In vitro studies suggest that inhibition responses in SMP of F0F1-ATPase enzyme were strongly dependent on the concentration assay (from 3 to 5 µg/mL) for both pristine and COOH single-walled carbon nanotubes types (SWCNT). Besides, both SWCNTs show an interaction inhibition pattern mimicking the oligomycin A (the specific mitochondria F0F1-ATPase inhibitor blocking the c-ring F0 subunit). Performed docking studies denote the best crystallography binding pose obtained for the docking complexes based on the free energy of binding (FEB) fit well with the in vitro evidence from the thermodynamics point of view, following an affinity order such as: FEB (oligomycin A/F0-ATPase complex) = −9.8 kcal/mol > FEB (SWCNT-COOH/F0-ATPase complex) = −6.8 kcal/mol ~ FEB (SWCNT-pristine complex) = −5.9 kcal/mol, with predominance of van der Waals hydrophobic nano-interactions with key F0-ATPase binding site residues (Phe 55 and Phe 64). Elastic network models and fractal surface analysis were performed to study conformational perturbations induced by SWCNT. Our results suggest that interaction may be triggering abnormal allosteric responses and signals propagation in the inter-residue network, which could affect the substrate recognition ligand geometrical specificity of the F0F1-ATPase enzyme in order (SWCNT-pristine > SWCNT-COOH). In addition, Nano-QSTR models have been developed to predict toxicity induced by both SWCNTs, using results of in vitro and docking studies. Results show that this method may be used for the fast prediction of the nanotoxicity induced by SWCNT, avoiding time- and money-consuming techniques. Overall, the obtained results may open new avenues toward to the better understanding and prediction of new nanotoxicity mechanisms, rational drug design-based nanotechnology, and potential biomedical application in precision nanomedicine.


2007 ◽  
Vol 21 (3) ◽  
pp. 438-448 ◽  
Author(s):  
Maria Davoren ◽  
Eva Herzog ◽  
Alan Casey ◽  
Benjamin Cottineau ◽  
Gordon Chambers ◽  
...  

2014 ◽  
Vol 25 (10) ◽  
pp. 1744-1751 ◽  
Author(s):  
King S. Siu ◽  
Xiufen Zheng ◽  
Yanling Liu ◽  
Yujuan Zhang ◽  
Xusheng Zhang ◽  
...  

Author(s):  
Nagarjun V. Konduru ◽  
Yulia Y. Tyurina ◽  
Weihong Feng ◽  
Liana V. Basova ◽  
Natalia A. Belikova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document