scholarly journals QUASI-CONFORMAL CURVATURE TENSOR OF GENERALIZED SASAKIAN-SPACE-FORMS

2020 ◽  
Vol 35 (1) ◽  
pp. 089
Author(s):  
Braj B. Chaturvedi ◽  
Brijesh K. Gupta

The present paper deals the study of generalised Sasakian-space-forms with the conditions Cq(ξ,X).S = 0, Cq(ξ,X).R = 0 and Cq(ξ,X).Cq = 0, where R, S and Cq denote Riemannian curvature tensor, Ricci tensor and quasi-conformal curvature tensor of the space-form, respectively and at last, we have given some examples to improve our results.

Filomat ◽  
2019 ◽  
Vol 33 (4) ◽  
pp. 1209-1215
Author(s):  
Aleksandar Sebekovic ◽  
Miroslava Petrovic-Torgasev ◽  
Anica Pantic

For Legendrian submanifolds Mn in Sasakian space forms ?M2n+1(c), I. Mihai obtained an inequality relating the normalised scalar curvature (intrinsic invariant) and the squared mean curvature and the normalised scalar normal curvature of M in the ambient space ?M (extrinsic invariants) which is called the generalised Wintgen inequality, characterising also the corresponding equality case. And a Legendrian submanifold Mn in Sasakian space forms ?M2n+1(c) is said to be generalised Wintgen ideal Legendrian submanifold of ?M2n+1(c) when it realises at everyone of its points the equality in such inequality. Characterisations based on some basic intrinsic symmetries involving the Riemann-Cristoffel curvature tensor, the Ricci tensor and the Weyl conformal curvature tensor belonging to the class of pseudosymmetries in the sense of Deszcz of such generalised Wintgen ideal Legendrian submanifolds are given.


Filomat ◽  
2015 ◽  
Vol 29 (3) ◽  
pp. 443-456 ◽  
Author(s):  
Sinem Güler ◽  
Sezgin Demirbağ

In the present paper, we investigate generalized quasi Einstein manifolds satisfying some special curvature conditions R?S = 0,R?S = LSQ(g,S), C?S = 0,?C?S = 0,?W?S = 0 and W2?S = 0 where R, S, C,?C,?W and W2 respectively denote the Riemannian curvature tensor, Ricci tensor, conformal curvature tensor, concircular curvature tensor, quasi conformal curvature tensor and W2-curvature tensor. Later, we find some sufficient conditions for a generalized quasi Einstein manifold to be a quasi Einstein manifold and we show the existence of a nearly quasi Einstein manifolds, by constructing a non trivial example.


Author(s):  
Luo Chongshan

AbstractThis paper introduces a tensor that contains the Riemannian curvature tensor and the conformal curvature tensor as special examples in the Riemannian space (Mn, g), and by using this tensor we define C-semi-symmetric space. In this paper, we have the following main result: if there is a non-trivial concircular transformation between two C-semi-symmetric spaces, then both spaces are of quasi-constant curvature.


Author(s):  
Riddhi Jung Shah

In this paper we study generalized Sasakian-space-forms with D-conformal curvature tensor. In generalized Sasakian-space-forms, we investigate some results on D-conformally flat, ?-D-conformally flat, ?-D-conformally flat and the curvature condition B(? ?).S=0. Kathmandu University Journal of Science, Engineering and Technology Vol. 8, No. II, December, 2012, 48-56 DOI: http://dx.doi.org/10.3126/kuset.v8i2.7325


2014 ◽  
Vol 47 (3) ◽  
Author(s):  
A. Sarkar ◽  
Ali Akbar

AbstractThe object of the present paper is to study Ф-projectively flat generalized Sasakian-space-forms, projectively locally symmetric generalized Sasakian-space-forms and projectively locally Ф-symmetric generalized Sasakian-space-forms. All the obtained results are in the form of necessary and sufficient conditions. Interesting relations between projective curvature tensor and conformal curvature tensor of a generalized Sasakian-spaceform of dimension greater than three have been established. Some of these properties are also analyzed in the light of quarter-symmetric metric connection, in addition with the Levi-Civita connection. Obtained results are supported by illustrative examples.


Author(s):  
D. G. Prakasha ◽  
Kakasab Mirji

The paper deals with the study of $\mathcal{M}$-projective curvature tensor on $(k, \mu)$-contact metric manifolds. We classify non-Sasakian $(k, \mu)$-contact metric manifold satisfying the conditions $R(\xi, X)\cdot \mathcal{M} = 0$ and $\mathcal{M}(\xi, X)\cdot S =0$, where $R$ and $S$ are the Riemannian curvature tensor and the Ricci tensor, respectively. Finally, we prove that a $(k, \mu)$-contact metric manifold with vanishing extended $\mathcal{M}$-projective curvature tensor $\mathcal{M}^{e}$ is a Sasakian manifold.


2017 ◽  
Vol 29 (03) ◽  
pp. 1750007
Author(s):  
Carlo Alberto Mantica ◽  
Young Jin Suh

In this paper, we study the properties of weakly conformally symmetric pseudo- Riemannian manifolds focusing particularly on the [Formula: see text]-dimensional Lorentzian case. First, we provide a new proof of an important result found in literature; then several new others are stated. We provide a decomposition for the conformal curvature tensor in [Formula: see text]. Moreover, some important identities involving two particular covectors are stated; for example, it is proven that under certain conditions the Ricci tensor and other tensors are Weyl compatible. Topological properties involving the vanishing of the first Pontryagin form are then stated. Further, we study weakly conformally symmetric [Formula: see text]-dimensional Lorentzian manifolds (space-times): it is proven that one of the previously defined co-vectors is null and unique up to a scaling. Moreover, it is shown that under certain conditions, the same vector is an eigenvector of the Ricci tensor and its integral curves are geodesics. Finally, it is stated that such space-time is of Petrov type N with respect to the same vector.


2004 ◽  
Vol 01 (01n02) ◽  
pp. 97-106 ◽  
Author(s):  
N. BLAŽIĆ ◽  
P. GILKEY

We characterize manifolds which are locally conformally equivalent to either complex projective space or to its negative curvature dual in terms of their Weyl curvature tensor. As a byproduct of this investigation, we classify the conformally complex space forms if the dimension is at least 8. We also study when the Jacobi operator associated to the Weyl conformal curvature tensor of a Riemannian manifold has constant eigenvalues on the bundle of unit tangent vectors and classify such manifolds which are not conformally flat in dimensions congruent to 2 mod 4.


2010 ◽  
Vol 41 (2) ◽  
pp. 109-116 ◽  
Author(s):  
S. Decu ◽  
M. Petrovic-Torgasev ◽  
A. Sebekovic ◽  
L. Verstraelen

In this paper it is shown that all Wintgen ideal submanifolds in ambient real space forms are Chen submanifolds. It is also shown that the Wintgen ideal submanifolds of dimension $ >3 $ in real space forms do intrinsically enjoy some curvature symmetries in the sense of Deszcz of their Riemann--Christoffel curvature tensor, of their Ricci curvature tensor and of their Weyl conformal curvature tensor.


Sign in / Sign up

Export Citation Format

Share Document