scholarly journals ETA-RICCI SOLITONS ON LORENTZIAN PARA-KENMOTSU MANIFOLDS

Author(s):  
Shashikant Pandey ◽  
Abhishek Singh ◽  
Vishnu Narayan Mishra

The objective of present research article is to investigate the geometric properties of $\eta$-Ricci solitons on Lorentzian para-Kenmotsu manifolds. In this manner, we consider $\eta$-Ricci solitons on Lorentzian para-Kenmotsu manifolds satisfying $R\cdot S=0$. Further, we obtain results for $\eta$-Ricci solitons on Lorentzian para-Kenmotsu manifolds with quasi-conformally flat property. Moreover, we get results for $\eta$-Ricci solitons in Lorentzian para-Kenmotsu manifolds admitting Codazzi type of Ricci tensor and cyclic parallel Ricci tensor, $\eta$-quasi-conformally semi-symmetric, $\eta$-Ricci symmetric and quasi-conformally Ricci semi-symmetric. At last, we construct an example of a such manifold which justify the existence of proper $\eta$-Ricci solitons.


Author(s):  
Pradip Majhi ◽  
Uday Chand De ◽  
Debabrata Kar

AbstractIn this paper we studyη-Ricci solitons on Sasakian 3-manifolds. Among others we prove that anη-Ricci soliton on a Sasakian 3-manifold is anη-Einstien manifold. Moreover we considerη-Ricci solitons on Sasakian 3-manifolds with Ricci tensor of Codazzi type and cyclic parallel Ricci tensor. Beside these we study conformally flat andφ-Ricci symmetricη-Ricci soliton on Sasakian 3-manifolds. Alsoη-Ricci soliton on Sasakian 3-manifolds with the curvature conditionQ.R= 0 have been considered. Finally, we construct an example to prove the non-existence of properη-Ricci solitons on Sasakian 3-manifolds and verify some results.



Author(s):  
Krishnendu De ◽  
Uday Chand De

Abstract In the present paper we study η-Ricci solitons on Kenmotsu 3-manifolds. Moreover, we consider η-Ricci solitons on Kenmotsu 3-manifolds with Codazzi type of Ricci tensor and cyclic parallel Ricci tensor. Beside these, we study φ-Ricci symmetric η-Ricci soliton on Kenmotsu 3-manifolds. Also Kenmotsu 3-manifolds satisfying the curvature condition R.R = Q(S, R)is considered. Finally, an example is constructed to prove the existence of a proper η-Ricci soliton on a Kenmotsu 3-manifold.



Author(s):  
Sourav Makhal

The object of this paper is to study Codazzi type of Ricci tensor in generalized $(k,\mu )$-paracontact metric manifolds. Next we study cyclic parallel Ricci tensor in generalized $(k,\mu )$-paracontact metric manifolds. Further, we characterized generalized $(k,\mu )$-paracontact metric manifolds whose structure tensor $\phi$ is $\eta$-parallel. Finally, we investigate locally $\phi$-Ricci symmetric generalized $(k,\mu )$-paracontact metric manifolds.



Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1592
Author(s):  
İnan Ünal

In this study, we investigate generalized quasi-Einstein normal metric contact pair manifolds. Initially, we deal with the elementary properties and existence of generalized quasi-Einstein normal metric contact pair manifolds. Later, we explore the generalized quasi-constant curvature of normal metric contact pair manifolds. It is proved that a normal metric contact pair manifold with generalized quasi-constant curvature is a generalized quasi-Einstein manifold. Normal metric contact pair manifolds satisfying cyclic parallel Ricci tensor and the Codazzi type of Ricci tensor are considered, and further prove that a generalized quasi-Einstein normal metric contact pair manifold does not satisfy Codazzi type of Ricci tensor. Finally, we characterize normal metric contact pair manifolds satisfying certain curvature conditions related to M-projective, conformal, and concircular curvature tensors. We show that a normal metric contact pair manifold with generalized quasi-constant curvature is locally isometric to the Hopf manifold S2n+1(1)×S1.



Author(s):  
Mohd Siddiqi

The aim of the present research article is to study the f-kenmotsu manifolds admitting the η-Ricci Solitons and gradient Ricci solitons with respect to the semi-symmetric non metric connection.



Filomat ◽  
2018 ◽  
Vol 32 (14) ◽  
pp. 4971-4980 ◽  
Author(s):  
Simeon Zamkovoy

In this paper we study para-Kenmotsu manifolds. We characterize this manifolds by tensor equations and study their properties. We are devoted to a study of ?-Einstein manifolds. We show that a locally conformally flat para-Kenmotsu manifold is a space of constant negative sectional curvature -1 and we prove that if a para-Kenmotsu manifold is a space of constant ?-para-holomorphic sectional curvature H, then it is a space of constant sectional curvature and H = -1. Finally the object of the present paper is to study a 3-dimensional para-Kenmotsu manifold, satisfying certain curvature conditions. Among other, it is proved that any 3-dimensional para-Kenmotsu manifold with ?-parallel Ricci tensor is of constant scalar curvature and any 3-dimensional para-Kenmotsu manifold satisfying cyclic Ricci tensor is a manifold of constant negative sectional curvature -1.



2021 ◽  
Vol 58 (3) ◽  
pp. 308-318
Author(s):  
Yaning Wang ◽  
Wenjie Wang

In this paper, we prove that the ∗-Ricci tensor of a real hypersurface in complex projective plane ℂP 2 or complex hyperbolic plane ℂH 2 is cyclic parallel if and only if the hypersurface is of type (A). We find some three-dimensional real hypersurfaces having non-vanishing and non-parallel ∗-Ricci tensors which are cyclic parallel.



2017 ◽  
Vol 14 (09) ◽  
pp. 1750119
Author(s):  
Young Jin Suh ◽  
Carlo Alberto Mantica ◽  
Uday Chand De ◽  
Prajjwal Pal

In this paper, we introduce a new tensor named [Formula: see text]-tensor which generalizes the [Formula: see text]-tensor introduced by Mantica and Suh [Pseudo [Formula: see text] symmetric Riemannian manifolds with harmonic curvature tensors, Int. J. Geom. Methods Mod. Phys. 9(1) (2012) 1250004]. Then, we study pseudo-[Formula: see text]-symmetric manifolds [Formula: see text] which generalize some known structures on pseudo-Riemannian manifolds. We provide several interesting results which generalize the results of Mantica and Suh [Pseudo [Formula: see text] symmetric Riemannian manifolds with harmonic curvature tensors, Int. J. Geom. Methods Mod. Phys. 9(1) (2012) 1250004]. At first, we prove the existence of a [Formula: see text]. Next, we prove that a pseudo-Riemannian manifold is [Formula: see text]-semisymmetric if and only if it is Ricci-semisymmetric. After this, we obtain a sufficient condition for a [Formula: see text] to be pseudo-Ricci symmetric in the sense of Deszcz. Also, we obtain the explicit form of the Ricci tensor in a [Formula: see text] if the [Formula: see text]-tensor is of Codazzi type. Finally, we consider conformally flat pseudo-[Formula: see text]-symmetric manifolds and prove that a [Formula: see text] spacetime is a [Formula: see text]-wave under certain conditions.



2019 ◽  
Vol 16 (06) ◽  
pp. 1950092 ◽  
Author(s):  
Yaning Wang ◽  
Xinxin Dai

In this paper, we give a local characterization for the Ricci tensor of an almost Kenmotsu [Formula: see text]-manifold [Formula: see text] to be cyclic-parallel. As an application, we prove that if [Formula: see text] has cyclic-parallel Ricci tensor and satisfies [Formula: see text], (where [Formula: see text] is the Lie derivative of [Formula: see text] along the Reeb flow and both [Formula: see text] and [Formula: see text] are smooth functions such that [Formula: see text] is invariant along the contact distribution), then [Formula: see text] is locally isometric to either the hyperbolic space [Formula: see text] or a non-unimodular Lie group equipped with a left invariant non-Kenmotsu almost Kenmotsu structure.



Sign in / Sign up

Export Citation Format

Share Document