scholarly journals Optimization of Curing Agents for Linear Difunctional Glycidyl Azide Polymer (GAP), with and without Isocyanate, for Binder Applications

2018 ◽  
Vol 15 (1) ◽  
pp. 206-222 ◽  
Author(s):  
Javaid Athar ◽  
Ravidra Soman ◽  
Namdeo Agawane ◽  
Rashmi Wagh ◽  
Mahadev Talwar
Molecules ◽  
2019 ◽  
Vol 24 (24) ◽  
pp. 4475 ◽  
Author(s):  
Tomasz Jarosz ◽  
Agnieszka Stolarczyk ◽  
Agata Wawrzkiewicz-Jalowiecka ◽  
Klaudia Pawlus ◽  
Karolina Miszczyszyn

Glycidyl azide polymer (GAP), an energetic binder, is the focus of this review. We briefly introduce the key properties of this well-known polymer, the difference between energetic and non-energetic binders in propellant and explosive formulations, the fundamentals for producing GAP and its copolymers, as well as for curing GAP using different types of curing agents. We use recent works as examples to illustrate the general approaches to curing GAP and its derivatives, while indicating a number of recently investigated curing agents. Next, we demonstrate that the properties of GAP can be modified either through internal (structural) alterations or through the introduction of external (plasticizers) additives and provide a summary of recent progress in this area, tying it in with studies on the properties of such modifications of GAP. Further on, we discuss relevant works dedicated to the applications of GAP as a binder for propellants and plastic-bonded explosives. Lastly, we indicate other, emerging applications of GAP and provide a summary of its mechanical and energetic properties.


Author(s):  
Yutaka Wada ◽  
S. Hatano ◽  
Ayana Banno ◽  
Yo Kawabata ◽  
Hiroshi Hasegawa ◽  
...  

Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 278 ◽  
Author(s):  
Jinghui Hu ◽  
Weiqiang Tang ◽  
Yonghui Li ◽  
Jiyu He ◽  
Xiaoyan Guo ◽  
...  

A new energetic curing reagent, Glycidyl azide polymer grafted tetrafunctional isocyanate (N100-g-GAP) was synthesized and characterized by FT-IR and GPC approaches. Polytriazole polyethylene oxide-tetrahydrofuran (PTPET) elastomer was prepared by N100-g-GAP and alkynyl terminated polyethylene oxide-tetrahydrofuran (ATPET). The resulting PTPET elastomer was fully characterized by TGA, DMA, FTIR and mechanical test. The above analysis indicates that PTPET elastomers using N100-g-GAP as curing reagent have the potential for use in propellants. The overall formulation test of the composite propellants shows that this curing system can effectively enhance mechanical strength and bring a significant improvement in the interface interaction between the RDX & AP particles and binder matrix.


2009 ◽  
Vol 114 (6) ◽  
pp. 3360-3368 ◽  
Author(s):  
S. K. Manu ◽  
T. L. Varghese ◽  
S. Mathew ◽  
K. N. Ninan

Sign in / Sign up

Export Citation Format

Share Document