curing agents
Recently Published Documents


TOTAL DOCUMENTS

572
(FIVE YEARS 98)

H-INDEX

40
(FIVE YEARS 5)

Author(s):  
Maryam Jouyandeh ◽  
Mohammad Reza Ganjali ◽  
Mehdi Mehrpooya ◽  
Otman Abida ◽  
Karam Jabbour ◽  
...  

There was a question on “how lanthanides doping in iron oxide affects cure kinetics of epoxy-based nanocomposites?” To answer, we synthesized samarium (Sm)-doped Fe3O4 nanoparticles via electrochemical method and characterized it using FTIR, XRD, FE-SEM, EDX, TEM, and XPS analyses. The magnetic particles were uniformly dispersed in epoxy resin to increase the curability of the epoxy/amine system. The effect of the lanthanide dopant on the curing reaction of epoxy with amine was explored by modeling DSC experimental data based on model-free methodology. It was found that Sm3+ in the structure of Fe3O4 crystal participates in cross-linking of epoxy by catalyzing the reaction between epoxide rings and amine groups of curing agents. In addition, the etherification reaction of active OH groups on the surface of nanoparticles reacts with epoxy rings which prolongs the reaction time at the late stage of reaction where diffusion is the dominant mechanism.


Author(s):  
Zhenwei Miao ◽  
Dongpeng Yan ◽  
Xiaodong Wang ◽  
Xinfang Zhang ◽  
Wenqi Zhou ◽  
...  

2021 ◽  
Author(s):  
Robert Green-Warren ◽  
Luc Bontoux ◽  
Noah McAllister ◽  
Dylan Kovacevich ◽  
Asaad Shaikh ◽  
...  

Electrospray deposition (ESD) is a versatile micro/nano coating technology that utilizes the competition between surface charge of a droplet and its surface tension to create monodisperse generations of micro/nano droplets. ESD can deposit uniform thin films by including dilute solutes in these droplets. One mode of ESD, self-limiting electrospray deposition (SLED), has been shown to exist when glassy polymers are sprayed in a volatile solvent below the polymer glass transition temperature (Tg). This leads to charge accumulation on the coating surface that slows the growth of the film thickness. Since solutes can be easily blended in dilute ESD solutions, we investigate the SLED limits of self-limiting and non-self-limiting solute blends. As a motivating application, we focus on mechanical properties of the film. Specifically, we blend self-limiting polystyrene (PS) and SU-8 epoxy resin with different non-self-limiting mechanical modifiers, such as plasticizers and curing agents. To characterize the resulting morphologies and mechanical properties, we employ scanning electron microscopy and nanoindentation of as received and smoothed films. The results illustrate the formation of composited polymers that exhibit self-limiting ability by SLED, depending on the interaction between the two components. Further, mechanical properties could be effectively fine-tuned within these compositional ranges. This signifies the 3D coating capabilities through SLED can be implemented incorporating additional functionalities and properties beyond the base matrix.


Author(s):  
Dawid Zielinski ◽  
Andrea Szpecht ◽  
Paulina Hinc ◽  
Hieronim Maciejewski ◽  
Marcin Smiglak

Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3244
Author(s):  
Tsung-Yu Yu ◽  
Shih-Chieh Yeh ◽  
Jen-Yu Lee ◽  
Nae-Lih Wu ◽  
Ru-Jong Jeng

In this study, a series of crosslinked membranes were prepared as solid polymer electrolytes (SPEs) for all-solid-state lithium ion batteries (ASSLIBs). An epoxy-containing copolymer (glycidyl methacrylate-co-poly(ethylene glycol) methyl ether methacrylate, PGA) and two amine curing agents, linear Jeffamine ED2003 and hyperbranched polyethyleneimine (PEI), were utilized to prepare SPEs with various crosslinking degrees. The PGA/polyethylene oxide (PEO) blends were cured by ED2003 and PEI to obtain slightly and heavily crosslinked structures, respectively. For further optimizing the interfacial and the electrochemical properties, an interlocking bilayer membrane based on overlapping and subsequent curing of PGA/PEO/ED2003 and PEO/PEI layers was developed. The presence of this amino/epoxy network can inhibit PEO crystallinity and maintain the dimensional stability of membranes. For the slightly crosslinked PGA/PEO/ED2003 membrane, an ionic conductivity of 5.61 × 10−4 S cm−1 and a lithium ion transference number (tLi+) of 0.43 were obtained, along with a specific capacity of 156 mAh g−1 (0.05 C) acquired from an assembled half-cell battery. However, the capacity retention retained only 54% after 100 cycles (0.2 C, 80 °C), possibly because the PEO-based electrolyte was inclined to recrystallize after long term thermal treatment. On the other hand, the highly crosslinked PGA/PEO/PEI membrane exhibited a similar ionic conductivity of 3.44 × 10−4 S cm−1 and a tLi+ of 0.52. Yet, poor interfacial adhesion between the membrane and the cathode brought about a low specific capacity of 48 mAh g−1. For the reinforced interlocking bilayer membrane, an ionic conductivity of 3.24 × 10−4 S cm−1 and a tLi+ of 0.42 could be achieved. Moreover, the capacity retention reached as high as 80% after 100 cycles (0.2 C, 80 °C). This is because the presence of the epoxy-based interlocking bilayer structure can block the pathway of lithium dendrite puncture effectively. We demonstrate that the unique interlocking bilayer structure is capable of offering a new approach to fabricate a robust SPE for ASSLIBs.


Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2879
Author(s):  
Shun Muroga ◽  
Yu Takahashi ◽  
Yuta Hikima ◽  
Seisuke Ata ◽  
Sergei G. Kazarian ◽  
...  

Here, we propose a novel attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy method for simultaneously monitoring the curing reaction and the diffusion behavior of curing agents at the surface of rubber in real-time. The proposed scheme was demonstrated by fluorine rubber (FKM) and FKM/carbon nanotube (CNT) nanocomposites with a target curing agent of triallyl-isocyanurate (TAIC). The broadening and the evolution of the C=O stretching of TAIC were quantitatively analyzed to characterize the reaction and the diffusion. Changes in the width of the C=O stretching indicated the reaction rate at the surface was even faster than that of the bulk as measured by a curemeter. The diffusion coefficient of the curing agent in the course of heating was newly calculated by the initial increase in the absorbance and our model based on Fickian diffusion. The diffusion coefficients of TAIC during curing were evaluated, and its temperature and filler dependency were identified. Cross-sectional ATR-FTIR imaging and in situ ATR-FTIR imaging measurements supported the hypothesis of the unidirectional diffusion of the curing agent towards the heated surface. It was shown that our method of in situ ATR-FTIR can monitor the degrees of cure and the diffusion coefficients of curing agents simultaneously, which cannot be achieved by conventional methods, e.g., rheological measurements.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4866
Author(s):  
Shiping Jiang ◽  
Zhiyang Lin ◽  
Can Tang ◽  
Wenfeng Hao

Self-healing concrete designs can protect against deterioration and improve durability. However, there is no unified conclusion regarding the effective preparation and mechanical properties of self-healing concrete. In this paper, microcapsules are used in cement-based materials, the reasonable dosage of microcapsules is determined, and the self-healing performance of the microcapsule self-healing system under different curing agents is explored. The microcapsules and curing agent are shown to enhance the flexural and compressive strength of mortar specimens at relatively low contents. The optimal microcapsule content in terms of compressive strength is 1–3%. When the content of the microcapsule reaches 7%, the strength of the specimen decreases by approximately 30%. Sodium fluorosilicate is better-suited to the microcapsule self-healing cement-based system than the other two fluorosilicates, potassium fluorosilicate and magnesium, which have similarly poor healing performance as curing agents. Healing time also appears to significantly influence the microcapsule self-healing system; mortar specimens that healed for 28 days are significantly higher than those that healed for 7 days. This work may provide a valuable reference for the design and preparation of self-healing cementitious composite structures.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Alexey Slobodinyuk ◽  
Vladimir Strelnikov ◽  
Dmitriy Kiselkov ◽  
Daria Slobodinyuk

Abstract A method for the synthesis of oligotetramethylene oxides with terminal amino groups is presented. Its use as a hardener for urethane-containing oligomers has been demonstrated. The diamines were synthesized by a two-stage method based on oligotetramethylene oxide diol. The compounds can be used for the production of non-toxic, biocompatible and biodegradable segmented urethane-containing elastomers. The oligotetramethylene oxide diol with an average molecular mass of 1008 was chosen as a typical precursor component. Its dibromide was formed using a quasi-phosphonium reagent in various solvents. The corresponding amine was obtained by high-pressure amination. The compounds have been identified by 1H and 13C NMR spectroscopy, IR spectroscopy, and elemental analysis.


Sign in / Sign up

Export Citation Format

Share Document