scholarly journals Nutritive Evaluation and Trace Metal Contents of Commercial Edible Mushroom –Agaricus bisporus

Author(s):  
Selvakumar. S.V.K
2003 ◽  
Vol 371 (2) ◽  
pp. 311-320 ◽  
Author(s):  
Albert M. WU ◽  
June H. WU ◽  
Anthony HERP ◽  
Jia-Hau LIU

Agaricus bisporus agglutinin (ABA) isolated from edible mushroom has a potent anti-proliferative effect on malignant colon cells with considerable therapeutic potential as an anti-neoplastic agent. Since previous studies on the structural requirement for binding were limited to molecular or submolecular levels of Galβ1-3GalNAc (T; Thomsen–Friedenreich disaccharide glycotope; where Gal represents d-galactopyranose and GalNAc represents 2-acetamido-2-deoxy-d-galactopyranose) and its derivatives, the binding properties of ABA were further investigated using our collection of glycans by enzyme-linked lectinosorbent assay and lectin–glycan inhibition assay. The results indicate that polyvalent Galβ1-related glycotopes, GalNAcα1-Ser/Thr (Tn), and their cryptoforms, are the most potent factor for ABA binding. They were up to 5.5×105 and 4.7×106 times more active than monomeric T and GalNAc respectively. The affinity of ABA for ligands can be ranked as: multivalent Tα (Galβ1-3GalNAcα1-), Tn and I/II (Galβ1-3GlcNac/Galβ1-4GlcNAc, where GlcNAc represents 2-acetamido-2-deoxy-d-glucopyranose)>>>>monomeric Tα and Tn>I>>GalNAc>>>II, L (Galβ1-4Glc, where Glc represents d-glucopyranose) and Gal (inactive). These specific binding features of ABA establish the importance of affinity enhancement by high-density polyvalent (versus multiantennary I/II) glycotopes and facilitate our understanding of the lectin receptor recognition events relevant to its biological activities.


2013 ◽  
Vol 71 (6) ◽  
pp. 2807-2819 ◽  
Author(s):  
Şehnaz Şener ◽  
Ayşen Davraz ◽  
Remzi Karagüzel

Sign in / Sign up

Export Citation Format

Share Document