Lignocellulolytic Enzymes
Recently Published Documents


TOTAL DOCUMENTS

185
(FIVE YEARS 115)

H-INDEX

21
(FIVE YEARS 9)

Author(s):  
Samaila Boyi Ajeje ◽  
Yun Hu ◽  
Guojie Song ◽  
Sunday Bulus Peter ◽  
Richmond Godwin Afful ◽  
...  

The bioconversion of lignocellulose into monosaccharides is critical for ensuring the continual manufacturing of biofuels and value-added bioproducts. Enzymatic degradation, which has a high yield, low energy consumption, and enhanced selectivity, could be the most efficient and environmentally friendly technique for converting complex lignocellulose polymers to fermentable monosaccharides, and it is expected to make cellulases and xylanases the most demanded industrial enzymes. The widespread nature of thermophilic microorganisms allows them to proliferate on a variety of substrates and release substantial quantities of cellulases and xylanases, which makes them a great source of thermostable enzymes. The most significant breakthrough of lignocellulolytic enzymes lies in lignocellulose-deconstruction by enzymatic depolymerization of holocellulose into simple monosaccharides. However, commercially valuable thermostable cellulases and xylanases are challenging to produce in high enough quantities. Thus, the present review aims at giving an overview of the most recent thermostable cellulases and xylanases isolated from thermophilic and hyperthermophilic microbes. The emphasis is on recent advancements in manufacturing these enzymes in other mesophilic host and enhancement of catalytic activity as well as thermostability of thermophilic cellulases and xylanases, using genetic engineering as a promising and efficient technology for its economic production. Additionally, the biotechnological applications of thermostable cellulases and xylanases of thermophiles were also discussed.


2021 ◽  
Vol 55 (9-10) ◽  
pp. 1061-1069
Author(s):  
NABILA BELHAMICHE ◽  
◽  
FRANCIS DUCHIRON ◽  
SAID BENALLAOUA ◽  
◽  
...  

Valorization of agricultural and agro-food by-products by fermentation constitutes a very interesting biotechnological approach for the production of lignocellulolytic enzymes. This work was carried out to reveal the effect of some lignocellulosic materials on the mycelial growth and lignocellulolytic enzymes production by Bjerkandera adusta BRFM 1916. The strain showed ABTS- and guaiacol-oxidation activities. The optimal temperature for mycelial growth was 28 °C. The maximum growth rate of this fungus was achieved on wheat bran (2.08 ± 0.05 cm day-1), followed by barley bran, with a significant reduction of 6.73%. Several agricultural lignocellulosic residues were used as substrates for enzymes production. All the data indicated differential utilization of the various materials by the fungus. The selected fungus produced good CMCase (690 ± 0.066 UL-1) and β-Glu (253 UL-1) activities on wheat bran and orange peels, respectively. A high level of MnP activity (449.21 ± 3.44 UL-1) was obtained on wheat bran.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2379
Author(s):  
Priya Rana ◽  
Baskaran Stephen Inbaraj ◽  
Sushma Gurumayum ◽  
Kandi Sridhar

Valorization of agro-industrial waste through greener and biotechnological processes are promising approaches to minimize the generation of agro-industrial waste. Therefore, the study aimed to produce lignocellulolytic enzymes from agro-industrial waste under solid-state fermentation (SSF) conditions and study their application in the clarification of pumpkin juice. The SSF was performed with three different combinations of wheat bran + rice bran (WBRB), wheat bran + wheat straw (WBWS), and rice bran + wheat straw (RBWS) as dry solid substrates (1:1) using Fusarium oxysporum (MTCC 7229). The protein, carboxymethyl cellulase (CMCase), and xylanase contents ranged from 0.98–3.90 mg/g, 5.89–6.84 U/g substrate, and 10.08–13.77 U/g substrate, respectively in different agro-industrial waste as substrates (WBRB, WBWS, RBWS, and control). The increase in enzyme concentration (0.50–2.40%) added to pumpkin juice exhibited an increased juice yield (16.30–55.60%), reduced browning index (1.03–0.70), and an increase in clarity (5.31–13.77 %T), which was further confirmed by a total variance of 84.83% by principal component analysis. Thus, the low-cost lignocellulolytic enzymes can be produced from agro-industrial waste that might have applications in food and beverage industries. Hence, this approach could be used as a long-term sustainable and circular source to valorize agro-industrial waste towards the greener future and the preservation of ecosystems.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
André L. A. Neves ◽  
Jiangkun Yu ◽  
Yutaka Suzuki ◽  
Marisol Baez-Magana ◽  
Elena Arutyunova ◽  
...  

Abstract Background Carbohydrate-active enzymes (CAZymes) form the most widespread and structurally diverse set of enzymes involved in the breakdown, biosynthesis, or modification of lignocellulose that can be found in living organisms. However, the structural diversity of CAZymes has rendered the targeted discovery of novel enzymes extremely challenging, as these proteins catalyze many different chemical reactions and are sourced by a vast array of microbes. Consequently, many uncharacterized members of CAZyme families of interest have been overlooked by current methodologies (e.g., metagenomic screening) used to discover lignocellulolytic enzymes. Results In the present study, we combined phenotype-based selective pressure on the rumen microbiota with targeted functional profiling to guide the discovery of unknown CAZymes. In this study, we found 61 families of glycoside hydrolases (GH) (out of 182 CAZymes) from protein sequences deposited in the CAZy database—currently associated with more than 20,324 microbial genomes. Phenotype-based selective pressure on the rumen microbiome showed that lignocellulolytic bacteria (e.g., Fibrobacter succinogenes, Butyrivibrio proteoclasticus) and three GH families (e.g., GH11, GH13, GH45) exhibited an increased relative abundance in the rumen of feed efficient cattle when compared to their inefficient counterparts. These results paved the way for the application of targeted functional profiling to screen members of the GH11 and GH45 families against a de novo protein reference database comprised of 1184 uncharacterized enzymes, which led to the identification of 18 putative xylanases (GH11) and three putative endoglucanases (GH45). The biochemical proof of the xylanolytic activity of the newly discovered enzyme validated the computational simulations and demonstrated the stability of the most abundant xylanase. Conclusions These findings contribute to the discovery of novel enzymes for the breakdown, biosynthesis, or modification of lignocellulose and demonstrate that the rumen microbiome is a source of promising enzyme candidates for the biotechnology industry. The combined approaches conceptualized in this study can be adapted to any microbial environment, provided that the targeted microbiome is easy to manipulate and facilitates enrichment for the microbes of interest.


2021 ◽  
Author(s):  
Yamuna Annadurai ◽  
Balamuralikrishnan Balasubramanian ◽  
Vijaya Anand Arumugam ◽  
Wenchao Liu ◽  
Karthika Pushparaj ◽  
...  

Activities of anthropological organisms lead to the production of massive lignocellulosic waste every year and these lignocellulolytic enzymes plays crucial role in developing eco-friendly, sustainable and economical methods for decomposing and pre-treating the biomass to produce biofuels, organic acids, feeds and enzymes. Lignocellulolytic enzymes sustainably hydrolyse the biomass and can be utilized in wide range of applications such as personal care, pharmaceutical, biofuel release, sewage treatment, food and beverage industries. Every year a significant ton of biomass waste is released and insight on these crucial enzymes could establish in all the industries. However, due to the increased demand for compost materials, biomass degradation has resulted in composting processes. Several methods for improving compost amount and quality have been explored, including increasing decomposer inoculums, stimulating microbial activity, and establishing a decomposable environment. All of these prerequisites are met by biotechnological applications. Biotechnological procedures are used to improve the activity of enzymes on biomass. It leads to an adequate supply of compost and base materials for enterprises. In terms of effectiveness and stability during the breakdown process, lignocellulolytic enzymes derived from genetically modified species outperformed naturally derived lignocellulolytic enzymes. It has the potential to increase the quality and output of by-products. This review discussed the development of lignocellulolytic enzyme families and their widespread applications in a variety of industries such as olive oil extraction, carotenoid extraction, waste management, pollution control, second-generation bio-ethanol production, textile and dyeing, pharmaceuticals, pulp and paper, animal feed, food processing industries, detergent, and agricultural industries.


2021 ◽  
Vol 28 ◽  
Author(s):  
Hina Qaiser ◽  
Afshan Kaleem ◽  
Roheena Abdullah ◽  
Mehwish Iqtedar ◽  
Daniel C. Hoessli

: Lignocellulosic biomass, one of the most valuable natural resources, is abundantly present on earth. Being a renewable feedstock, it harbors a great potential to be exploited as a raw material, to produce various value-added products. Lignocellulolytic microorganisms hold a unique position regarding the valorization of lignocellulosic biomass as they contain efficient enzyme systems capable of degrading this biomass. The ubiquitous nature of these microorganisms and their survival under extreme conditions have enabled their use as an effective producer of lignocellulolytic enzymes with improved biochemical features crucial to industrial bioconversion processes. These enzymes can prove to be an exquisite tool when it comes to the eco-friendly manufacturing of value-added products using waste material. This review focuses on highlighting the significance of lignocellulosic biomass, microbial sources of lignocellulolytic enzymes and their use in the formation of useful products.


2021 ◽  
Vol 16 (11) ◽  
pp. 134-140
Author(s):  
Ram Kumar Pundir ◽  
Pranay Jain

The potential use of microorganisms as biotechnological sources of industrially important enzymes has stimulated interest in exploration of extracellular enzymatic activity in several microorganisms. Endophytic fungi are those fungi which colonize plants internally without apparent adverse effect. Endophytic fungi are relatively unexplored producers of metabolites useful to pharmaceutical and agricultural industries. As a result, the role of endophytes in production of various natural products with greater bioactivity has received increased attention. Endophytic fungi have been found to degrade lignocellulose consisting of lignin, cellulose and hemicellulose with the aid of lignocellulases enzynes. This review highlights the potential of endophytic fungi for production of lignocellulases and also discusses the present status and future prospectives in this field.


2021 ◽  
Vol 7 (10) ◽  
pp. 835
Author(s):  
Zichen Zhang ◽  
Aabid Manzoor Shah ◽  
Hassan Mohamed ◽  
Yao Zhang ◽  
Nino Tsiklauri ◽  
...  

Cerrena unicolor is an ecologically and biotechnologically important wood-degrading basidiomycete with high lignocellulose degrading ability. Biological and genetic investigations are limited in the Cerrena genus and, thus, hinder genetic modification and commercial use. The aim of the present study was to provide a global understanding through genomic and experimental research about lignocellulosic biomass utilization by Cerrena unicolor. In this study, we reported the genome sequence of C. unicolor SP02 by using the Illumina and PacBio 20 platforms to obtain trustworthy assembly and annotation. This is the combinational 2nd and 3rd genome sequencing and assembly of C. unicolor species. The generated genome was 42.79 Mb in size with an N50 contig size of 2.48 Mb, a G + C content of 47.43%, and encoding of 12,277 predicted genes. The genes encoding various lignocellulolytic enzymes including laccase, lignin peroxidase, manganese peroxidase, cytochromes P450, cellulase, xylanase, α-amylase, and pectinase involved in the degradation of lignin, cellulose, xylan, starch, pectin, and chitin that showed the C. unicolor SP02 potentially have a wide range of applications in lignocellulosic biomass conversion. Genome-scale metabolic analysis opened up a valuable resource for a better understanding of carbohydrate-active enzymes (CAZymes) and oxidoreductases that provide insights into the genetic basis and molecular mechanisms for lignocellulosic degradation. The C. unicolor SP02 model can be used for the development of efficient microbial cell factories in lignocellulosic industries. The understanding of the genetic material of C. unicolor SP02 coding for the lignocellulolytic enzymes will significantly benefit us in genetic manipulation, site-directed mutagenesis, and industrial biotechnology.


2021 ◽  
Vol 7 (10) ◽  
pp. 785
Author(s):  
Kakoli Chanda ◽  
Atifa Begum Mozumder ◽  
Ringhoilal Chorei ◽  
Ridip Kumar Gogoi ◽  
Himanshu Kishore Prasad

Fungal endophytes are an emerging source of novel traits and biomolecules suitable for lignocellulosic biomass treatment. This work documents the toxicity tolerance of Colletotrichum sp. OH toward various lignocellulosic pretreatment-derived inhibitors. The effects of aldehydes (vanillin, p-hydroxybenzaldehyde, furfural, 5-hydroxymethylfurfural; HMF), acids (gallic, formic, levulinic, and p-hydroxybenzoic acid), phenolics (hydroquinone, p-coumaric acid), and two pretreatment chemicals (hydrogen peroxide and ionic liquid), on the mycelium growth, biomass accumulation, and lignocellulolytic enzyme activities, were tested. The reported Colletotrichum sp. OH was naturally tolerant to high concentrations of single inhibitors like HMF (IC50; 17.5 mM), levulinic acid (IC50; 29.7 mM), hydroquinone (IC50; 10.76 mM), and H2O2 (IC50; 50 mM). The lignocellulolytic enzymes displayed a wide range of single and mixed inhibitor tolerance profiles. The enzymes β-glucosidase and endoglucanase showed H2O2- and HMF-dependent activity enhancements. The enzyme β-glucosidase activity was 34% higher in 75 mM and retained 20% activity in 125 mM H2O2. Further, β-glucosidase activity increased to 24 and 32% in the presence of 17.76 and 8.8 mM HMF. This research suggests that the Colletotrichum sp. OH, or its enzymes, can be used to pretreat plant biomass, hydrolyze it, and remove inhibitory by-products.


Sign in / Sign up

Export Citation Format

Share Document