In this paper, atmospheric water-soluble cation and anion contents of PM10 are analysed in Makkah, Saudi Arabia. PM10 samples were collected at five sites for a whole year. PM10 concentrations (µg/m3) ranged from 82.11 to 739.61 at Aziziyah, 65.37 to 421.71 at Sanaiyah, 25.20 to 466.60 at Misfalah, 52.56 to 507.23 at Abdeyah, and 40.91 to 471.99 at Askan. Both daily and annual averaged PM10 concentrations exceeded WHO and Saudi Arabia national air quality limits. Daily averaged PM10 concentration exceeded the national air quality limits of 340 µg/m3, 32% of the time at Aziziyah, 8% of the time at Sanaiyah, and 6% of the time at the other three sites. On average, the cations and anions made a 37.81% contribution to the PM10 concentrations. SO42−, NO3−, Ca2+, Na+, and Cl− contributed 50.25%, 16.43%, 12.11%, 11.12%, and 8.70% to the total ion concentrations, respectively. The minor ions (F−, Br−, Mg2+, NO2−, and PO43−) contributed just over 1% to the ion mass. Four principal components explained 89% variations in PM10 concentrations. Four major emission sources were identified: (a) Road traffic, including emission from the exhaust, wear-and-tear, and the resuspension of dust particles (F−, SO42−, NO3−, Ca2+, Na+, Mg+, Br−, Cl−, NO2−, PO43−); (b) Mineral dust (Cl−, F−, Na+, Ca2+, Mg2+, PO43−); (c) Industries and construction–demolition work (F−, SO42−, Ca2+, Mg2+); and (d) Seaspray and marine aerosols (Cl−, Br−, Mg2+, Na+). Future work would include an analysis of the metal contents of PM10 and their spatiotemporal variability in Makkah.