scholarly journals Reactive Power Compensation and Power Factor Correction by using Static VAR Compensator (SVC)

Author(s):  
Aafreen S. Sheikh

In this paper, a reactive power compensation system using static VAR compensator is presented. To confine on system stability and reliability, the reactive power compensation is the fundamental way forflexible AC transmission systems (FACTS). The variations of reactive power have an effect on thegenerating units, lines, circuit breakers, transformers, relays, and isolators. It can also cause effective voltage sags and increase losses. In the proposed system, the lead time between voltage pulse and curren pulse is measured and fed to the interrupt pins of the microcontroller where the program takes over to bring the shunt capacitors to the circuit to get the reactive power compensated. Back-to-back SCRs interfaced through optical isolation from the microcontroller are used in parallel for controlling the capacitor.

2020 ◽  
Vol 13 (3) ◽  
pp. 381-393
Author(s):  
Farhana Fayaz ◽  
Gobind Lal Pahuja

Background:The Static VAR Compensator (SVC) has the capability of improving reliability, operation and control of the transmission system thereby improving the dynamic performance of power system. SVC is a widely used shunt FACTS device, which is an important tool for the reactive power compensation in high voltage AC transmission systems. The transmission lines compensated with the SVC may experience faults and hence need a protection system against the damage caused by these faults as well as provide the uninterrupted supply of power.Methods:The research work reported in the paper is a successful attempt to reduce the time to detect faults on a SVC-compensated transmission line to less than quarter of a cycle. The relay algorithm involves two ANNs, one for detection and the other for classification of faults, including the identification of the faulted phase/phases. RMS (Root Mean Square) values of line voltages and ratios of sequence components of line currents are used as inputs to the ANNs. Extensive training and testing of the two ANNs have been carried out using the data generated by simulating an SVC-compensated transmission line in PSCAD at a signal sampling frequency of 1 kHz. Back-propagation method has been used for the training and testing. Also the criticality analysis of the existing relay and the modified relay has been done using three fault tree importance measures i.e., Fussell-Vesely (FV) Importance, Risk Achievement Worth (RAW) and Risk Reduction Worth (RRW).Results:It is found that the relay detects any type of fault occurring anywhere on the line with 100% accuracy within a short time of 4 ms. It also classifies the type of the fault and indicates the faulted phase or phases, as the case may be, with 100% accuracy within 15 ms, that is well before a circuit breaker can clear the fault. As demonstrated, fault detection and classification by the use of ANNs is reliable and accurate when a large data set is available for training. The results from the criticality analysis show that the criticality ranking varies in both the designs (existing relay and the existing modified relay) and the ranking of the improved measurement system in the modified relay changes from 2 to 4.Conclusion:A relaying algorithm is proposed for the protection of transmission line compensated with Static Var Compensator (SVC) and criticality ranking of different failure modes of a digital relay is carried out. The proposed scheme has significant advantages over more traditional relaying algorithms. It is suitable for high resistance faults and is not affected by the inception angle nor by the location of fault.


2013 ◽  
Vol 397-400 ◽  
pp. 1113-1116
Author(s):  
Xiao Meng Wu ◽  
Wang Hao Fei ◽  
Xiao Mei Xiang ◽  
Wen Juan Wang

In order to solve the problem in reactive power compensation of oilfield distribution systems at present, a Taboo search algorithm is proposed in this paper, by which the optimal location and size of shunt capacitors on distribution systems are determined. Then the voltage profile is improved and the active power loss is reduced. In this paper, Voltage qualified is used as objective function to search an initial solution that meets the voltage constraints so that it is feasible in practicable voltage range; then the global optimum solution can be got when taking the reduced maximum of active power loss as objective unction. The examples show that the improved algorithm is feasible and effective.


Author(s):  
Damian O Dike ◽  
Satish M Mahajan

A strategy is presented for the self-tuning of a voltage source converter (VSC) based Flexible AC Transmission Systems (FACTS) according to the prevailing system condition. L-index, which is a power system voltage stability status indicator, and its associated parameters are used to automatically regulate the modulation signal of the VSC. This will lead to a proportionate adjusting of the magnitude of the current injected into, or absorbed from, the interconnected load bus by the FACTS device. This regulating scheme will enhance seamless and optimal reactive power compensation by utilizing the dynamic operational nature of present day distressed power system networks. Results obtained using this method when applied to selected load buses of the IEEE 14 bus system under varying practical scenarios showed its capability to appropriately control FACTS devices operation to accommodate system changing conditions. It is hoped that the outcome of this work will provide efficient tools for the determination of power system status, ensure optimal utilization of the dynamic reactive power compensation devices and reduce system outages.


2019 ◽  
Vol 8 (4) ◽  
pp. 11456-11459

Generally, power system faces the problem to transfer power from one system to another system without any fluctuations, with minimal of system losses. To overcome this problems, a flexible ac transmission system is implemented in this paper. In present scenario, facts devices are used to reduce the transmission losses for improvising transmission capacity and also to improve the system capability. Unified Power Flow Controller plays a most prominent role in FACTS controller to improve the system stability. The structure of UPFC is combination of back-back converters with boosting and zigzag transformer. This type of UPFC system consists of high losses due to presence of magnetic properties in this transformer. With this, a transformer-less multilevel inverter based UPFC topology is proposed in this paper. This paper focuses on the modulation of transformerless UPFC with PSO, which controlsfundamental frequency for better controlling of active and reactive power, harmonic minimization, and improvement in efficiency of system by controlling DC link voltage


Author(s):  
Mothanna Sh. Aziz ◽  
Ahmed G. Abdullah

<span>This article shows a prospective utilizations of flexible AC transmission system (FACTS) controls, like the static VAR compensator (SVC). One of the major motives for setting up an SVC is to recover dynamic voltage controller and thus increase system load aptitude. Static VAR compensator system proposed in this work consists of thyristor switched capacitor and thyristor controlled reactor sets, this style of SVC modelled using MATLAB simulink toolbox. A hybrid genetic algorithm with PI and fuzzy logic controls that used to control and expand the grid performance of the power system. The model results reveal that the Static Var Compensation contribute a decent result in upholding bus voltage after the power network is in an active and steady moment, besides it has a capability of the constancy control. It can totally work as a significant plan of reactive power recompense in power networks. </span>


Sign in / Sign up

Export Citation Format

Share Document