scholarly journals Investigation of behavior of BESS with PV using MATLAB/Simulink

Author(s):  
Yash Gupta

Abstract: As renewable energy penetration rises, integrating it will become a major issue that will necessitate new generating support infrastructure; an energy storage system is one answer to this problem. Battery technologies, in particular, have a wide range of energy and power output capabilities, making them perfect for integration. In many regions where renewable energy generation systems will be implemented, distributed energy storage on distribution grids may be required. When the sun is not shining or the weather is cloudy, an energy storage system is required for solar photovoltaic systems. For PV applications, a battery is used as an energy storage system. Keywords: Energy storage system, Battery, Simulink and modelling.

Author(s):  
Peggy P. Ip ◽  
Sammy Houssainy ◽  
H. Pirouz Kavehpour

Undeveloped small hydropower generation sites are abundant throughout the water conveyance infrastructure and natural rivers in the United States. Due to its small scale, micro-hydro development requires substantial upfront capital costs, maintenance and operation costs for customized engineering and construction. The significant investments required for developing small hydropower are inhibiting for utilities, residential and commercial users to adopt. An inexpensive energy storage system and a well-designed power controls system can be integrated with small hydropower sites to increase its cost-effectiveness and reliability. This paper introduces the concept of storing low-power generated from small hydro turbines during long off-peak periods and dispatching at high-power as grid-quality electricity during peak periods. The use of an ultra-low cost thermal energy storage (ULCTES) system is examined. Boosting the power output for small hydro generation allows commercial users to avoid significant demand charges during operation, making small hydro an attractive cost saving strategy and therefore breaking down the cost barrier. The ULCTES operates much like a bulk power production unit and a peaker plant, in which it is capable of dispatching constant power over a long period during peak periods when conventional sources are unavailable. Improvements in system reliability and economic value are evaluated using microgrid optimization software HOMER Energy. In particular, two cases are studied with variations in types of end users and energy management goals. Energy costs savings, demand charges savings and renewable energy penetration are determined. Distributed energy storage systems are shown to reduce energy costs and increase the renewable energy penetration for commercial users. With ULCTES, microgrids have the flexibility to manage fluctuating renewable energy generation as well as respond to rapidly changing loads on a daily basis. A larger hydroelectricity system is shown to be more feasible with distributed energy storage systems for isolated users without any connection to the grid.


Sign in / Sign up

Export Citation Format

Share Document