scholarly journals Multi-Agent Fuzzy Reinforcement Learning for Autonomous Vehicles

2020 ◽  
Author(s):  
Esther Akinwumi
Author(s):  
Aaron Young ◽  
Jay Taves ◽  
Asher Elmquist ◽  
Simone Benatti ◽  
Alessandro Tasora ◽  
...  

Abstract We describe a simulation environment that enables the design and testing of control policies for off-road mobility of autonomous agents. The environment is demonstrated in conjunction with the training and assessment of a reinforcement learning policy that uses sensor fusion and inter-agent communication to enable the movement of mixed convoys of human-driven and autonomous vehicles. Policies learned on rigid terrain are shown to transfer to hard (silt-like) and soft (snow-like) deformable terrains. The environment described performs the following: multi-vehicle multibody dynamics co-simulation in a time/space-coherent infrastructure that relies on the Message Passing Interface standard for low-latency parallel computing; sensor simulation (e.g., camera, GPU, IMU); simulation of a virtual world that can be altered by the agents present in the simulation; training that uses reinforcement learning to 'teach' the autonomous vehicles to drive in an obstacle-riddled course. The software stack described is open source.


2021 ◽  
Author(s):  
Haitham Afifi

<div>We develop a Deep Reinforcement Learning (DeepRL) based multi-agent algorithm to efficiently control</div><div>autonomous vehicles in the context of Wireless Sensor Networks (WSNs). In contrast to other applications, WSNs</div><div>have two metrics for performance evaluation. First, quality of information (QoI) which is used to measure the</div><div>quality of sensed data. Second, quality of service (QoS) which is used to measure the network’s performance. As</div><div>a use case, we consider wireless acoustic sensor networks; a group of speakers move inside a room and there</div><div>are microphones installed on vehicles for streaming the audio data. We formulate an appropriate Markov Decision</div><div>Process (MDP) and present, besides a centralized solution, a multi-agent Deep Q-learning solution to control the vehicles. We compare the proposed solutions to a naive heuristic and two different real-world implementations: microphones being hold or preinstalled. We show using simulations that the performance of autonomous vehicles in terms of QoI and QoS is better than the real-world implementation and the proposed heuristic. Additionally, we provide theoretical analysis of the performance with respect to WSNs dynamics, such as speed, rooms dimensions and speaker’s talking time.</div>


2021 ◽  
Author(s):  
Haitham Afifi

<div>We develop a Deep Reinforcement Learning (DeepRL) based multi-agent algorithm to efficiently control</div><div>autonomous vehicles in the context of Wireless Sensor Networks (WSNs). In contrast to other applications, WSNs</div><div>have two metrics for performance evaluation. First, quality of information (QoI) which is used to measure the</div><div>quality of sensed data. Second, quality of service (QoS) which is used to measure the network’s performance. As</div><div>a use case, we consider wireless acoustic sensor networks; a group of speakers move inside a room and there</div><div>are microphones installed on vehicles for streaming the audio data. We formulate an appropriate Markov Decision</div><div>Process (MDP) and present, besides a centralized solution, a multi-agent Deep Q-learning solution to control the vehicles. We compare the proposed solutions to a naive heuristic and two different real-world implementations: microphones being hold or preinstalled. We show using simulations that the performance of autonomous vehicles in terms of QoI and QoS is better than the real-world implementation and the proposed heuristic. Additionally, we provide theoretical analysis of the performance with respect to WSNs dynamics, such as speed, rooms dimensions and speaker’s talking time.</div>


Author(s):  
Hao Jiang ◽  
Dianxi Shi ◽  
Chao Xue ◽  
Yajie Wang ◽  
Gongju Wang ◽  
...  

Author(s):  
Xiaoyu Zhu ◽  
Yueyi Luo ◽  
Anfeng Liu ◽  
Md Zakirul Alam Bhuiyan ◽  
Shaobo Zhang

Sign in / Sign up

Export Citation Format

Share Document