A Deep Residual Network with Transfer Learning for Pixel-level Road Crack Detection

Author(s):  
Seongdeok Bang ◽  
Somin Park ◽  
Hongjo Kim ◽  
Yeo-san Yoon ◽  
Hyoungkwan Kim
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Chao Su ◽  
Wenjun Wang

Crack plays a critical role in the field of evaluating the quality of concrete structures, which affects the safety, applicability, and durability of the structure. Due to its excellent performance in image processing, the convolutional neural network is becoming the mainstream choice to replace manual crack detection. In this paper, we improve the EfficientNetB0 to realize the detection of concrete surface cracks using the transfer learning method. The model is designed by neural architecture search technology. The weights are pretrained on the ImageNet. Supervised learning uses Adam optimizer to update network parameters. In the testing process, crack images from different locations were used to further test the generalization capability of the model. By comparing the detection results with the MobileNetV2, DenseNet201, and InceptionV3 models, the results show that our model greatly reduces the number of parameters while achieving high accuracy (0.9911) and has good generalization capability. Our model is an efficient detection model, which provides a new option for crack detection in areas with limited computing resources.


2021 ◽  
Vol 45 (4) ◽  
pp. 600-607
Author(s):  
I. Hamdi ◽  
Y. Tounsi ◽  
M. Benjelloun ◽  
A. Nassim

Change detection from synthetic aperture radar images becomes a key technique to detect change area related to some phenomenon as flood and deformation of the earth surface. This paper proposes a transfer learning and Residual Network with 18 layers (ResNet-18) architecture-based method for change detection from two synthetic aperture radar images. Before the application of the proposed technique, batch denoising using convolutional neural network is applied to the two input synthetic aperture radar image for speckle noise reduction. To validate the performance of the proposed method, three known synthetic aperture radar datasets (Ottawa; Mexican and for Taiwan Shimen datasets) are exploited in this paper. The use of these datasets is important because the ground truth is known, and this can be considered as the use of numerical simulation. The detected change image obtained by the proposed method is compared using two image metrics. The first metric is image quality index that measures the similarity ratio between the obtained image and the image of the ground truth, the second metrics is edge preservation index, it measures the performance of the method to preserve edges. Finally, the method is applied to determine the changed area using two Sentinel 1 B synthetic aperture radar images of Eddahbi dam situated in Morocco.


SoftwareX ◽  
2021 ◽  
Vol 16 ◽  
pp. 100893
Author(s):  
Mateusz Żarski ◽  
Bartosz Wójcik ◽  
Jarosław Adam Miszczak

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Muhammad Mateen ◽  
Junhao Wen ◽  
Nasrullah Nasrullah ◽  
Song Sun ◽  
Shaukat Hayat

In the field of ophthalmology, diabetic retinopathy (DR) is a major cause of blindness. DR is based on retinal lesions including exudate. Exudates have been found to be one of the signs and serious DR anomalies, so the proper detection of these lesions and the treatment should be done immediately to prevent loss of vision. In this paper, pretrained convolutional neural network- (CNN-) based framework has been proposed for the detection of exudate. Recently, deep CNNs were individually applied to solve the specific problems. But, pretrained CNN models with transfer learning can utilize the previous knowledge to solve the other related problems. In the proposed approach, initially data preprocessing is performed for standardization of exudate patches. Furthermore, region of interest (ROI) localization is used to localize the features of exudates, and then transfer learning is performed for feature extraction using pretrained CNN models (Inception-v3, Residual Network-50, and Visual Geometry Group Network-19). Moreover, the fused features from fully connected (FC) layers are fed into the softmax classifier for exudate classification. The performance of proposed framework has been analyzed using two well-known publicly available databases such as e-Ophtha and DIARETDB1. The experimental results demonstrate that the proposed pretrained CNN-based framework outperforms the existing techniques for the detection of exudates.


Sign in / Sign up

Export Citation Format

Share Document