scholarly journals Optimization of Shell and Tube Heat Exchanger Design in Organic Rankine Cycle System Using Kinetic Gas Molecule Optimization

2019 ◽  
Vol 12 (2) ◽  
pp. 297-304
Author(s):  
Tallapureddy Reddy ◽  
◽  
Thimmasandra Reddy ◽  
2018 ◽  
Vol 22 (Suppl. 3) ◽  
pp. 855-866
Author(s):  
Anil Erdogan ◽  
Ozgur Colpan

In this study, thermal models for subcritical and supercritical geothermal powered organic Rankine cycles are developed to compare the performance of these cycle configurations. Both of these models consist of a detailed model for the shell and tube heat exchanger integrating the geothermal and organic Rankine cycles sides and basic thermodynamic models for the rest of the components of the cycle. In the modeling of the heat exchanger, this component was divided into sever?al zones and the outlet conditions of each zone were found applying logarithmic mean temperature difference method. Different Nusselt correlations according to the relevant phase (single, two-phase, and supercritical) were also included in this model. Using the system-level model, the effect of the source temperature on the performances of the heat exchanger and the organic Rankine cycle was assessed. These performance parameters are heat transfer surface area and pressure drop of tube side fluid for the heat exchanger, and electrical and exergetic efficiencies of the integrated organic Rankine cycles system. It was found that 44.12% more net power is generated when the supercritical organic Rankine cycle is used compared to subcritical organic Rankine cycle.


2015 ◽  
Vol 77 (27) ◽  
Author(s):  
Omid Rowshanaie ◽  
Saari Mustapha ◽  
Kamarul Arifin Ahmad ◽  
Hooman Rowshanaie

A simulation model of Organic Rankine Cycle (ORC) was developed with HYSYS software driven by R245fa, with NOVEC7000 and R141b as working fluids and Fluegas of boilers as a heat source of shell and tube Heat Exchanger to generate large scale electricity. The initial working condition was in subcooled liquid and steady state condition. R141b was found to generate the highest electricity power increment in specific mass flow rates and inlet pressures of Expander because of approaching its critical temperature to inlet Fluegas temperature. Howeever, in terms of economic considerations and cost of shell and tube Heat Exchanger that related to total heat transfer capacity, NOVEC7000 is the optimum selection. Furthermore, R245fa has the highest total effiiciency of ORC compared with other working fluids in this study.


AIChE Journal ◽  
2016 ◽  
Vol 63 (6) ◽  
pp. 1907-1922 ◽  
Author(s):  
Caroline de O. Gonçalves ◽  
André L. H. Costa ◽  
Miguel J. Bagajewicz

2013 ◽  
Vol 856 ◽  
pp. 349-356 ◽  
Author(s):  
Kai Yang ◽  
Hong Guang Zhang ◽  
Zhen Wang ◽  
Jian Zhang ◽  
Fu Bin Yang ◽  
...  

Through experiment, the variation of the exhaust energy of the vehicle diesel engine is studied, a set of vehicle diesel engine-organic Rankine cycle (ORC) combined system with internal heat exchanger (IHE) is designed, the zeotropic mixtures R416A is used as the working fluids for the ORC system with IHE, by theoretical analysis and numerical calculation, the variation of the vehicle diesel engine-ORC combined system with IHE under entire operating conditions of the diesel engine is studied, the calculation results show that, when engine is operating at high speed and high torque, the performance of the vehicle diesel engine-ORC combined system with IHE is higher.


Author(s):  
Torsten Berning

This paper describes the development of a numerical algorithm and a graphical method that can be employed in order to determine the overall heat transfer coefficient inside heat exchangers. The method is based on an energy balance and utilizes the spreadsheet application software Microsoft Excel™. The application is demonstrated in an example for designing a single pass shell and tube heat exchanger that was developed in the Department of Materials Technology of the Norwegian University of Science and Technology (NTNU) where water vapor is superheated by a secondary oil cycle. This approach can be used to reduce the number of hardware iterations in heat exchanger design.


Sign in / Sign up

Export Citation Format

Share Document