scholarly journals Improvement for Single Image Super-resolution and Image Segmentation by Graph Laplacian Regularizer Based on Differences of Neighboring Pixels

Qiang Yu ◽  
Feiqiang Liu ◽  
Long Xiao ◽  
Zitao Liu ◽  
Xiaomin Yang

Deep-learning (DL)-based methods are of growing importance in the field of single image super-resolution (SISR). The practical application of these DL-based models is a remaining problem due to the requirement of heavy computation and huge storage resources. The powerful feature maps of hidden layers in convolutional neural networks (CNN) help the model learn useful information. However, there exists redundancy among feature maps, which can be further exploited. To address these issues, this paper proposes a lightweight efficient feature generating network (EFGN) for SISR by constructing the efficient feature generating block (EFGB). Specifically, the EFGB can conduct plain operations on the original features to produce more feature maps with parameters slightly increasing. With the help of these extra feature maps, the network can extract more useful information from low resolution (LR) images to reconstruct the desired high resolution (HR) images. Experiments conducted on the benchmark datasets demonstrate that the proposed EFGN can outperform other deep-learning based methods in most cases and possess relatively lower model complexity. Additionally, the running time measurement indicates the feasibility of real-time monitoring.

Vishal Chudasama ◽  
Kishor Upla ◽  
Kiran Raja ◽  
Raghavendra Ramachandra ◽  
Christoph Busch

IEEE Access ◽  
2021 ◽  
pp. 1-1
Kai Shao ◽  
Qinglan Fan ◽  
Yunfeng Zhang ◽  
Fangxun Bao ◽  
Caiming Zhang

2021 ◽  
Vol 213 ◽  
pp. 106663
Yujie Dun ◽  
Zongyang Da ◽  
Shuai Yang ◽  
Yao Xue ◽  
Xueming Qian

Sign in / Sign up

Export Citation Format

Share Document