scholarly journals Nuclear Activity and the Conditions of Star-formation at the Galactic Center

2017 ◽  
Author(s):  
Andreas Eckart ◽  
Monica Valencia-S. ◽  
B. Shahzamanian ◽  
M. Zajacek ◽  
L. Moser ◽  
...  
2013 ◽  
Vol 9 (S303) ◽  
pp. 354-363 ◽  
Author(s):  
T. Storchi-Bergmann

AbstractI discuss feeding and feedback processes observed in the inner few hundred parsecs of nearby active galaxies using integral field spectroscopy at spatial resolutions of a few to tens of parsecs. Signatures of feedback include outflows from the nucleus with velocities ranging from 200 to 1000 km s−1, with mass outflow rates between 0.5 and a few M⊙ yr−1. Signatures of feeding include the observation of gas inflows along nuclear spirals and filaments, with velocities ranging from 50 to 100 km s−1 and mass flow rates from 0.1 to ∼1 M⊙ yr−1. These rates are 2–3 orders of magnitude larger than the mass accretion rate to the supermassive black hole (SMBH). These inflows can thus lead, during less than one activity cycle, to the accumulation of enough gas in the inner few hundred parsecs, to trigger the formation of new stars, leading to the growth of the galaxy bulge. Young to intermediate age stars have indeed been found in circumnuclear rings around a number of Active Galactic Nuclei (AGN). In particular, one of these rings, with radius of ≈ 100 pc is observed in the Seyfert 2 galaxy NGC 1068, and is associated to an off-centered molecular ring, very similar to that observed in the Milky Way (MW). On the basis of an evolutionary scenario in which gas falling into the nuclear region triggers star formation followed by the triggering of nuclear activity, we speculate that, in the case of the MW, molecular gas has already accumulated within the inner ≈ 100 pc to trigger the formation of new stars, as supported by the presence of blue stars close to the galactic center. A possible increase in the star-formation rate in the nuclear region will then be followed, probably tens of millions of years later, by the triggering of nuclear activity in Sgr A*.


2020 ◽  
Vol 15 (S359) ◽  
pp. 192-194
Author(s):  
Elismar Lösch ◽  
Daniel Ruschel-Dutra

AbstractGalaxy mergers are known to drive an inflow of gas towards galactic centers, potentia- lly leading to both star formation and nuclear activity. In this work we aim to study how a major merger event in the ARP 245 system is linked with the triggering of an active galactic nucleus (AGN) in the NGC galaxy 2992. We employed three galaxy collision numerical simulations and calculated the inflow of gas through four different concentric spherical surfaces around the galactic centers, estimating an upper limit for the luminosity of an AGN being fed the amount of gas crossing the innermost spherical surface. We found that these simulations predict reasonable gas inflow rates when compared with the observed AGN luminosity in NGC 2992.


2016 ◽  
Vol 11 (S322) ◽  
pp. 245-252 ◽  
Author(s):  
Francoise Combes

AbstractUnderstanding our Galactic Center is easier with insights from nearby galactic nuclei. Both the star formation activity in nuclear gas disks, driven by bars and nuclear bars, and the fueling of low-luminosity AGN, followed by feedback of jets, driving molecular outflows, were certainly present in our Galactic Center, which appears now quenched. Comparisons and diagnostics are reviewed, in particular of m = 2 and m = 1 modes, lopsidedness, different disk orientations, and fossil evidences of activity and feedback.


1998 ◽  
Vol 184 ◽  
pp. 317-318 ◽  
Author(s):  
Keven I. Uchida ◽  
Mark R. Morris ◽  
Gene Serabyn ◽  
David Fong ◽  
Thomas Meseroll

The Sgr A East H ii complex consists of 4 compact H ii regions situated just east of and following, in an arc pattern, the edge of the Sgr A East nonthermal shell. Located between the arc of H ii regions and the nonthermal shell is a dense molecular ridge – presumably compressed – known as the “50 km/s cloud”. The hypothesis that these H ii regions delineate massive star formation provoked by the rapid expansion of Sgr A East into the molecular cloud is problematical because of the mismatch of the shell expansion and star formation time scales. We therefore examine the alternative hypothesis that Sgr A East is a quasi-static or slowly expanding structure fed from within by the release of relativistic particles from sources at or near the nucleus. The elongation of SgrA East along the Galactic plane is ascribed to the shear inherent in the velocity field this close to the Galactic center (GC). In this proceeding we discuss our ongoing efforts to model the effects of shear in detail, using the elongation of Sgr A East to constrain its expansion time scale.


2004 ◽  
Vol 353 (3) ◽  
pp. 713-731 ◽  
Author(s):  
Guinevere Kauffmann ◽  
Simon D. M. White ◽  
Timothy M. Heckman ◽  
Brice Ménard ◽  
Jarle Brinchmann ◽  
...  

1982 ◽  
Vol 263 ◽  
pp. 736 ◽  
Author(s):  
M. J. Lebofsky ◽  
G. H. Rieke ◽  
A. T. Tokunaga

2001 ◽  
Vol 559 (2) ◽  
pp. L101-L104 ◽  
Author(s):  
J. Afonso ◽  
B. Mobasher ◽  
B. Chan ◽  
L. Cram

1996 ◽  
Vol 157 ◽  
pp. 560-568
Author(s):  
William C. Keel

AbstractI review some of the more notable observational aspects of bars in galaxies. Key issues include the overall occurrence of bars, secular evolution of bars and bulges, the differences in bar properties with Hubble type, the role of bars in star formation and nuclear activity, and the evidence for a bar at the center of the Milky Way. These lead to a “wish list” of future observations.


Sign in / Sign up

Export Citation Format

Share Document