scholarly journals Feeding and feedback in nearby AGN – comparison with the Milky Way center

2013 ◽  
Vol 9 (S303) ◽  
pp. 354-363 ◽  
Author(s):  
T. Storchi-Bergmann

AbstractI discuss feeding and feedback processes observed in the inner few hundred parsecs of nearby active galaxies using integral field spectroscopy at spatial resolutions of a few to tens of parsecs. Signatures of feedback include outflows from the nucleus with velocities ranging from 200 to 1000 km s−1, with mass outflow rates between 0.5 and a few M⊙ yr−1. Signatures of feeding include the observation of gas inflows along nuclear spirals and filaments, with velocities ranging from 50 to 100 km s−1 and mass flow rates from 0.1 to ∼1 M⊙ yr−1. These rates are 2–3 orders of magnitude larger than the mass accretion rate to the supermassive black hole (SMBH). These inflows can thus lead, during less than one activity cycle, to the accumulation of enough gas in the inner few hundred parsecs, to trigger the formation of new stars, leading to the growth of the galaxy bulge. Young to intermediate age stars have indeed been found in circumnuclear rings around a number of Active Galactic Nuclei (AGN). In particular, one of these rings, with radius of ≈ 100 pc is observed in the Seyfert 2 galaxy NGC 1068, and is associated to an off-centered molecular ring, very similar to that observed in the Milky Way (MW). On the basis of an evolutionary scenario in which gas falling into the nuclear region triggers star formation followed by the triggering of nuclear activity, we speculate that, in the case of the MW, molecular gas has already accumulated within the inner ≈ 100 pc to trigger the formation of new stars, as supported by the presence of blue stars close to the galactic center. A possible increase in the star-formation rate in the nuclear region will then be followed, probably tens of millions of years later, by the triggering of nuclear activity in Sgr A*.

2013 ◽  
Vol 9 (S303) ◽  
pp. 1-14
Author(s):  
John Bally ◽  

AbstractThe 3.5 meter diameter Herschel Space Observatory conducted a ∼720 square-degree survey of the Galactic plane, the Herschel Galactic plane survey (Hi-GAL). These data provide the most sensitive and highest resolution observations of the far-IR to sub-mm continuum from the central molecular zone (CMZ) at λ = 70, 160, 250, 350, and 500 μm obtained to date. Hi-GAL can be used to map the distributions of temperature and column density of dust in CMZ clouds, warm dust in Hii regions, and identify highly embedded massive protostars and clusters and the dusty shells ejected by supergiant stars. These data enable classification of sources and re-evaluation of the current and recent star-formation rate in the CMZ. The outer CMZ beyond |l| = 0.9 degrees (Rgal > 130 pc) contains most of the dense (n > 104 cm−3 gas in the Galaxy but supports very little star formation. The Hi-GAL and Spitzer data show that almost all star formation occurs in clouds moving on x2 orbits at Rgal < 100 pc. While the 106 M⊙ Sgr B2 complex, the 50 km s−1 cloud near Sgr A, and the Sgr C region are forming clusters of massive stars, other clouds are relatively inactive star formers, despite their high densities, large masses, and compact sizes. The asymmetric distribution of dense gas about Sgr A* on degree scales (most dense CMZ gas and dust is at positive Galactic longitudes and positive VLSR) and compact 24 μm sources (most are at negative longitudes) may indicate that eposidic mini-starbursts occasionally ‘blow-out’ a portion of the gas on these x2 orbits. The resulting massive-star feedback may fuel the compact 30 pc scale Galactic center bubble associated with the Arches and Quintuplet clusters, the several hundred pc scale Sofue-Handa lobe, and the kpc-scale Fermi/LAT bubble, making it the largest ‘superbubble’ in the Galaxy. A consequence of this model is that in our Galaxy, instead of the supermassive black hole (SMBH) limiting star formation, star formation may limit the growth of the SMBH.


1998 ◽  
Vol 184 ◽  
pp. 433-434
Author(s):  
A. M. Ghez ◽  
B. L. Klein ◽  
C. McCabe ◽  
M. Morris ◽  
E. E. Becklin

Although the notion that the Milky Way galaxy contains a supermassive central black hole has been around for more than two decades, it has been difficult to prove that one exists. The challenge is to assess the distribution of matter in the few central parsecs of the Galaxy. Assuming that gravity is the dominant force, the motion of the stars and gas in the vicinity of the putative black hole offers a robust method for accomplishing this task, by revealing the mass interior to the radius of the objects studied. Thus objects located closest to the Galactic Center provide the strongest constraints on the black hole hypothesis.


2013 ◽  
Vol 9 (S303) ◽  
pp. 61-65
Author(s):  
John S. Gallagher ◽  
Tova M. Yoast-Hull ◽  
Ellen G. Zweibel

AbstractThe Milky Way appears as a typical barred spiral, and comparisons can be made between its nuclear region and those of structurally similar nearby spirals. Maffei 2, M83, IC 342 and NGC 253 are nearby systems whose nuclear region properties contrast with those of the Milky Way. Stellar masses derived from NIR photometery, molecular gas masses and star formation rates allow us to assess the evolutionary states of this set of nuclear regions. These data suggest similarities between nuclear regions in terms of their stellar content while highlighting significant differences in current star formation rates. In particular current star formation rates appear to cover a larger range than expected based on the molecular gas masses. This behavior is consistent with nuclear region star formation experiencing episodic variations. Under this hypothesis the Milky Way's nuclear region currently may be in a low star formation rate phase.


2013 ◽  
Vol 9 (S303) ◽  
pp. 132-138
Author(s):  
S. N. Longmore

AbstractThe star formation rate in the central 500 pc of the Milky Way is lower by a factor of > 10 than expected for the substantial amount of dense gas it contains, which challenges current star formation theories. I discuss which physical mechanisms could be causing this observation and put forward a self-consistent cycle of star formation in the Galactic center, in which the plausible star formation inhibitors are combined. Their ubiquity suggests that the perception of a lowered central SFR should be a common phenomenon in other galaxies with direct implications for galactic star formation and also potentially supermassive black hole growth. I then describe a scenario to explain the presence of super star clusters in the Galactic center environment, in which their formation is triggered by gas streams passing close to the minimum of the global Galactic gravitational potential at the location of the central supermassive black hole, Sgr A*. If this triggering mechanism can be verified, we can use the known time interval since closest approach to Sgr A* to study the physics of stellar mass assembly in an extreme environment as a function of absolute time. I outline the first results from detailed numerical simulations testing this scenario. Finally, I describe a study showing that in terms of the baryonic composition, kinematics, and densities, the gas in the Galactic center is indistinguishable from high-redshift clouds and galaxies. As such, the Galactic center clouds may be used as a template to understand the evolution (and possibly the life cycle) of high-redshift clouds and galaxies.


2017 ◽  
Vol 13 (S334) ◽  
pp. 314-315
Author(s):  
S. Khoperskov ◽  
M. Haywood ◽  
P. Di Matteo ◽  
M. Lehnert ◽  
F. Combes

AbstractTo explore the relation between bar formation and star formation in Milky Way-type galaxies quantitatively, we simulated gas-rich disk isolated galaxies. We find that the action of the stellar bar efficiently quenches star formation, reducing the star-formation rate by a factor of 10 in less than 1 Gyr. Analytical and self-consistent galaxy simulations with bars suggest that the action of the stellar bar increases the gas random motions within the co-rotation radius of the bar. Indeed, we detect an increase in the gas velocity dispersion at the end of the bar formation phase. The star formation efficiency decreases rapidly, and in all of our models, the bar quenches the star formation in the galaxy. The star-formation efficiency is much lower in simulated barred compared to unbarred galaxies and more rapid bar formation implies more rapid quenching.


2007 ◽  
Vol 3 (S250) ◽  
pp. 307-312 ◽  
Author(s):  
M. M. Hanson ◽  
B. Popescu

AbstractThere are a few ways to estimate the number of massive open clusters expected in the disk of the Milky Way, such as the total star formation rate of the Galaxy, or the open cluster mass function extrapolated to include the entire Galaxy. Surprisingly, they give similar predictions: the Milky Way should contain about 100 clusters as massive as 30 Doradus. Are we seeing them? We look closely at these predictions and compare them to what has been found so far in our Galaxy. We present sophisticated image simulations our group is developing to estimate the selection biases faced by current infrared searches for these massive clusters.


2012 ◽  
Vol 8 (S292) ◽  
pp. 333-333
Author(s):  
Steven N. Longmore

AbstractRecent surface- and volume-density star formation relations have been proposed which potentially unify our understanding of how gas is converted into stars, from the nearest star forming regions to ultra-luminous infrared galaxies. The inner 500 pc of our Galaxy – the Central Molecular Zone – contains the largest concentration of dense, high-surface density molecular gas in the Milky Way, providing an environment where the validity of these star-formation prescriptions can be tested.We have used recently-available data from HOPS, MALT90 and HiGAL at wavelengths where the Galaxy is transparent, to find the dense, star-forming molecular gas across the Milky Way [Longmore et al. (2012a), Longmore et al. (2012b)]. We use water and methanol maser emission to trace star formation activity within the last 105 years and 30 GHz radio continuum emission from the Wilkinson Microwave Anisotropy Satellite (WMAP) to estimate the high-mass star formation rate averaged over the last ∼ 4 × 106 years.We find the dense gas distribution is dominated by the very bright and spatially-extended emission within a few degrees of the Galactic centre [Purcell et al. (2012)]. This region accounts for ∼80% of the NH3(1,1) integrated intensity but only contains 4% of the survey area. However, in stark contrast, the distribution of star formation activity tracers is relatively uniform across the Galaxy.To probe the dense gas vs SFR relationship towards the Galactic centre region more quantitatively, we compared the HiGAL column density maps to the WMAP-derived SFR across the same region. The total mass and SFR derived using these methods agree well with previous values in the literature. The main conclusion from this analysis is that both the column-density threshold and volumetric SF relations over-predict the SFR by an order of magnitude given the reservoir of dense gas available to form stars. The region 1° < l < 3.5°, |b| < 0.5° is particular striking in this regard. It contains ∼107 M⊙ of dense molecular gas — enough to form 1000 Orion-like clusters — but the present-day star formation rate within this gas is only equivalent to that in Orion. This implication of this result is that any universal column/volume density relations must be a necessary but not sufficient condition for SF to occur.Understanding why such large reservoirs of dense gas deviate from commonly assumed SF relations is of fundamental importance and may help in the quest to understand SF in more extreme (dense) environments, like those found in interacting galaxies and at earlier epochs of the Universe.


2003 ◽  
Vol 212 ◽  
pp. 487-496 ◽  
Author(s):  
Donald F. Figer

Our Galactic Center hosts over 10% of the known massive stars in the Galaxy. The majority of these stars are located in three particularly massive clusters that formed within the past 5 Myr. While these clusters are extraordinary, their formation repesents about half of the total inferred star-formation rate in the Galactic Center. There is mounting evidence that the clusters are just present-day examples of the hundreds of such similar clusters that must have been created in the past, and whose stars now comprise the bulk of all stars seen in the region. I discuss the massive stellar content in the Galactic Center and present a new analysis that suggests that effects of continuous star-formation in the Galactic Center can be seen in the observed luminosity functions newly-obtained HST-nicmos and Gemini-ao data.


2010 ◽  
Vol 6 (S270) ◽  
pp. 359-362
Author(s):  
Sungsoo S. Kim ◽  
Takayuki R. Saitoh ◽  
Myoungwon Jeon ◽  
David Merritt ◽  
Donald F. Figer ◽  
...  

AbstractGas materials in the inner Galactic disk continuously migrate toward the Galactic center (GC) due to interactions with the bar potential, magnetic fields, stars, and other gaseous materials. Those in forms of molecules appear to accumulate around 200 pc from the center (the central molecular zone, CMZ) to form stars there and further inside. The bar potential in the GC is thought to be responsible for such accumulation of molecules and subsequent star formation, which is believed to have been continuous throughout the lifetime of the Galaxy. We present 3-D hydrodynamic simulations of the CMZ that consider self-gravity, radiative cooling, and supernova feedback, and discuss the efficiency and role of the star formation in that region. We find that the gas accumulated in the CMZ by a bar potential of the inner bulge effectively turns into stars, supporting the idea that the stellar cusp inside the central 200 pc is a result of the sustained star formation in the CMZ. The obtained star formation rate in the CMZ, 0.03–0.1 M⊙, is consistent with the recent estimate based on the mid-infrared observations by Yusef-Zadeh et al. (2009).


Galaxies ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 5
Author(s):  
Xiang Cai ◽  
Jonathan H. Jiang ◽  
Kristen A. Fahy ◽  
Yuk L. Yung

In the field of astrobiology, the precise location, prevalence, and age of potential extraterrestrial intelligence (ETI) have not been explicitly explored. Here, we address these inquiries using an empirical galactic simulation model to analyze the spatial–temporal variations and the prevalence of potential ETI within the Galaxy. This model estimates the occurrence of ETI, providing guidance on where to look for intelligent life in the Search for ETI (SETI) with a set of criteria, including well-established astrophysical properties of the Milky Way. Further, typically overlooked factors such as the process of abiogenesis, different evolutionary timescales, and potential self-annihilation are incorporated to explore the growth propensity of ETI. We examine three major parameters: (1) the likelihood rate of abiogenesis (λA); (2) evolutionary timescales (Tevo); and (3) probability of self-annihilation of complex life (Pann). We found Pann to be the most influential parameter determining the quantity and age of galactic intelligent life. Our model simulation also identified a peak location for ETI at an annular region approximately 4 kpc from the galactic center around 8 billion years (Gyrs), with complex life decreasing temporally and spatially from the peak point, asserting a high likelihood of intelligent life in the galactic inner disk. The simulated age distributions also suggest that most of the intelligent life in our galaxy are young, thus making observation or detection difficult.


Sign in / Sign up

Export Citation Format

Share Document