scholarly journals On the transition from 3D to 2D transport equations for a study of long-term cosmic-ray intensity variations in the heliosphere

2021 ◽  
Author(s):  
Mikhail Krainev ◽  
Mikhail Kalinin ◽  
Boris Gvozdevsky ◽  
O.P.M. Aslam ◽  
Donald Ngobeni ◽  
...  

A study has been, conducted at Ahmedabad during 1957 and 1958 of the time variations of meson intensity incident from east and west at 45° to the vertical. A characteristic differ­ence of about 6 h in the diurnal time of maximum for the east and west directions is observed to occur on many days and this has been interpreted as signifying an anisotropy of primary radiation caused by a source outside the influence of the geomagnetic field. However, there are many days on which the daily variation has a maximum near noon for both directions. On such days the predominant influence is that of a local source situated within the influence of the geomagnetic field. The local source is associated with geomagnetically disturbed days. Long-term changes in the daily variation are found to be similar for the east, vertical and west directions.


Solar Physics ◽  
1970 ◽  
Vol 11 (1) ◽  
pp. 151-154 ◽  
Author(s):  
V. K. Balasubrahmanyan ◽  
D. Venkatesan

2003 ◽  
Vol 21 (4) ◽  
pp. 863-867 ◽  
Author(s):  
K. Mursula ◽  
I. G. Usoskin ◽  
G. A. Kovaltsov

Abstract. It was recently suggested (Lockwood, 2001) that the cosmic ray intensity in the neutron monitor energy range is linearly related to the coronal source flux, and can be reconstructed for the last 130 years using the long-term coronal flux estimated earlier. Moreover, Lockwood (2001) reconstructed the coronal flux for the last 500 years using a similar linear relation between the flux and the concentration of cosmogenic 10 Be isotopes in polar ice. Here we show that the applied linear relations are oversimplified and lead to unphysical results on long time scales. In particular, the cosmic ray intensity reconstructed by Lockwood (2001) for the last 130 years has a steep trend which is considerably larger than the trend estimated from observations during the last 65 years. Accordingly, the reconstructed cosmic ray intensity reaches or even exceeds the local interstellar cosmic ray flux around 1900. We argue that these unphysical results obtained when using linear relations are due to the oversimplified approach which does not take into account the complex and essentially nonlinear nature of long-term cosmic ray modulation in the heliosphere. We also compare the long-term cosmic ray intensity based on a linear treatment with the reconstruction based on a recent physical model which predicts a considerably lower cosmic ray intensity around 1900.Key words. Interplanetary physics (cosmic rays; heliopause and solar wind termination) – Geomagnetism and paleomagnetism (time variations, secular and long-term)


1968 ◽  
Vol 46 (10) ◽  
pp. S903-S906 ◽  
Author(s):  
J. A. Lockwood ◽  
W. R. Webber

The variation in the cosmic-ray intensity recorded by neutron monitors from 1958 to 1965 has been investigated to deduce the form of the solar modulation of the cosmic radiation. The observed changes in the intensity at the neutron monitor stations, averaged over quarter-year periods, were compared with changes calculated using modulation functions depending upon energy, rigidity, and velocity × rigidity. These calculations were based upon the revised differential response functions deduced by Lockwood and Webber (1967). The variance between the observed and calculated changes in the neutron monitor intensities at different stations was minimized to determine the best form of the solar modulation function. We find that the change of the primary cosmic radiation, deduced from the change in the neutron monitor intensity as well as from direct measurements of the primary flux, can be described by a modulation of the form exp(–K/P) in the rigidity range 0.5 < P < 50 GV. The change between 1959 and 1965 can be fitted with K = 1.94 ± 0.09 and between 1963 and 1965 with K = 0.36 ± 0.05.


1968 ◽  
Vol 46 (10) ◽  
pp. S887-S891 ◽  
Author(s):  
V. K. Balasubrahmanyan ◽  
D. E. Hagge ◽  
F. B. McDonald

The results of the continuous monitoring of the intensity of cosmic rays (of energy > 50 MeV) with identical G-M counter telescopes flown in satellites IMP I, II, and III and OGO-I are presented along with the differential spectrum studies obtained from balloon flights at Fort Churchill and from satellites. A comparison of the time behavior of the G-M counter data with Deep River neutron monitor data suggests the presence of a "hysteresis" type of behavior due to spectral changes occurring near solar minimum. The existence of this "hysteresis" suggests that the radial gradient of cosmic rays near the earth could be much smaller than the ~ 10%/AU obtained by O'Gallagher and Simpson (1967) and O'Gallagher (1967) at higher energies. The long-term intensity variation of cosmic rays seems to follow the Ap index rather closely in phase, in contrast to sunspot numbers which display a pronounced phase difference with cosmic-ray intensity. The differential spectra of protons and He nuclei have been analyzed in terms of two different models for the propagation in the interplanetary medium. The modulations indicated by the present data seem to disagree with a diffusion coefficient proportional to βR where β and R are the velocity and rigidity of the particle respectively (Jokipii 1966).


2008 ◽  
Vol 41 (2) ◽  
pp. 267-274 ◽  
Author(s):  
M.V. Alania ◽  
K. Iskra ◽  
M. Siluszyk

Sign in / Sign up

Export Citation Format

Share Document