Features of the interfacial zone structure formation during thermal diffusion metallization of diamond by transition metals

Author(s):  
P. P. Sharin ◽  
M. P. Akimova ◽  
S. P. Yakovleva ◽  
L. A. Nikiforov ◽  
V. I. Popov
2020 ◽  
Vol 11 (6) ◽  
pp. 1348-1358
Author(s):  
P. P. Sharin ◽  
M. P. Akimova ◽  
S. P. Yakovleva ◽  
L. A. Nikiforov ◽  
V. I. Popov

2019 ◽  
pp. 111-123 ◽  
Author(s):  
P. P. Sharin ◽  
M. P. Akimova ◽  
V. I. Popov

The paper studies structure and phase characteristics of the interphase zone diamond/matrix in dressers made by thermal diffusion metallization of a diamond combined with matrix sintering based on WC–Co and Cu impregnation. The compact arrangement of chromium powder particles around diamond grains and the shielding effect of copper foil create favorable conditions for thermal diffusion metallization of diamond at matrix sintering. A metallized coating chemically bonded with diamond and consisting of chromium carbide and solid solution of cobalt in chromium phases provides a strong diamond retention in the carbide matrix. It was shown that it is formed on the surface of the diamond under the conditions specified in the experiment and the temperature – time sintering mode. The specific productivity of experimental dresser made by hybrid technology at straightening green silicon carbide grinding wheel equaled 51.50 cm3/mg exceeding that of the control dresser made without metallization of diamonds by sintering with copper impregnation by 44.66%.


Author(s):  
P. P. Sharin ◽  
M. P. Akimova ◽  
S. P. Yakovleva ◽  
V. I. Popov

The paper studies the structure, elemental and phase composition of the diamond-matrix interface in a diamond tool for abrasive wheel dressing manufactured using a new hybrid technology that combines thermal diffusion metallization of diamond with chromium and sintering of a matrix based on WC–6%Co carbide powder mixture with copper impregnation in a single cycle of vacuum furnace operation. During matrix sintering, the compact arrangement of chromium powder particles around diamond grains and the shielding effect of copper foil create favorable conditions that ensure the thermal diffusion metallization of diamond. Scanning electron microscopy, X-ray diffraction, and Raman spectroscopy show that temperature-time modes and sintering conditions specified in the experiment provide for a metal coating chemically bonded to diamond that is formed on the diamond surface and consists of chromium carbide phases and cobalt solid solution in chromium providing durable diamond retention in the copper-impregnated carbide matrix. In this case, matrix structure and microhardness except for areas directly adjacent to the diamond-matrix interface remain the same as for the matrix of a powder mixture sintered without chromium. Comparative tests of similar diamond dressing pens were carried out and showed the high effectiveness of the hybrid technology in obtaining diamond-containing composites intended for tool applications. It is shown that the specific productivity of a pen prototype made using the hybrid technology was 51,50 cm3/mg when dressing a grinding wheel of green silicon carbide that is 44,66 % higher than the similar indicator for the sametype check pen made by the traditional method.


2016 ◽  
Vol 58 (5-6) ◽  
pp. 335-339
Author(s):  
M. Yu. Kollerov ◽  
A. M. Mamonov ◽  
V. V. Zasypkin ◽  
V. S. Spektor ◽  
Yu. É. Runova

2020 ◽  
Vol 992 ◽  
pp. 676-682
Author(s):  
P.P. Sharin ◽  
M.P. Akimova ◽  
S.P. Yakovleva

Structural-phase state of the diamond-metallized coating interphase boundary after thermal diffusion metallization of diamond grains by transition metals Fe, Ni and Co were studied. Metallization were conducted under temperature-time mode corresponding to the sintering of cemented carbide matrices with Cu impregnation. The structural-phase state of the metallized coating and diamond-coating interphase boundary was studied by scanning electron microscopy, X-ray phase analysis and Raman spectroscopy. A metallized coating strongly adhered to the diamond forms during thermal diffusion metallization of diamond by iron. The metallized coating has a complex structural phase composition of iron, a solid solution of carbon in iron and graphite phases. Nickel and cobalt cause intense catalytic graphitization of diamond with the formation of numerous traces of erosion on its surface under the heating conditions specified in the experiment. The observed weak adhesive interaction of these metals with diamond is probably due to the high melting temperatures of the Ni-C and Co-C eutectics, which does not allow the metals to react with diamond under given experimental conditions.


2020 ◽  
Vol 992 ◽  
pp. 670-675
Author(s):  
P.P. Sharin ◽  
M.P. Akimova ◽  
S.P. Yakovleva

Structural-phase state of the diamond-metallized coating interphase boundary after thermal diffusion metallization of diamond grains by transition metals Cr, Ti were studied. Metallization were conducted under temperature-time mode corresponding to the sintering of cemented carbide matrices with Cu impregnation. The structural-phase state of the metallized coating and diamond-coating interphase boundary was studied by scanning electron microscopy, X-ray phase analysis and Raman spectroscopy. It was found that a thin continuous metal carbide coating chemically bonded to the diamond and consisting of the corresponding metal, their carbides and small amount of graphite phases is formed during thermal diffusion metallization of diamond by Cr and Ti under the conditions specified in the experiment. It was shown that graphite is formed not by a continuous layer, but in the form of local inclusions. This ensures a strong adhesion of the metallized coating to the diamond through the carbides of the corresponding metals. The results can be useful in the development of compositions and technological methods that provide an increased level of diamond retention in the matrices of tools based on cemented carbide powder mixtures.


Sign in / Sign up

Export Citation Format

Share Document