scholarly journals CAN MANGROVES HELP COMBAT SEA LEVEL RISE THROUGH SEDIMENT ACCRETION AND ACCUMULATION?

2015 ◽  
Vol 34 (1) ◽  
pp. 78-86 ◽  
Author(s):  
Hoque M.M. ◽  
Abu Hena M. K. ◽  
Ahmed O. H. ◽  
Idris M. H. ◽  
Hoque A. T. M. ◽  
...  
2016 ◽  
Author(s):  
Carol A. Wilson ◽  
◽  
Michael Steckler ◽  
Steven L. Goodbred ◽  
Richard Hale ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245564
Author(s):  
G. E. Moore ◽  
D. M. Burdick ◽  
M. R. Routhier ◽  
A. B. Novak ◽  
A. R. Payne

In mid-winter 2018, an unprecedented sediment deposition event occurred throughout portions of the Great Marsh in Massachusetts. Evaluation of this event in distinct marsh areas spanning three towns (Essex, Ipswich, and Newbury) revealed deposition covering 29.2 hectares with an average thickness of 30.1±2.1 mm measured shortly after deposition. While sediment deposition helps marshes survive sea level rise by building elevation, effects of such a large-scale deposition on New England marshes are unknown. This natural event provided an opportunity to study effects of large-scale sediment addition on plant cover and soil chemistry, with implications for marsh resilience. Sediment thickness did not differ significantly between winter and summer, indicating sediment is not eroding or compacting. The deposited sediment at each site had similar characteristics to that of the adjacent mudflat (e.g., texture, bivalve shells), suggesting that deposited materials resulted from ice rafting from adjacent flats, a natural phenomenon noted by other authors. Vegetative cover was significantly lower in plots with rafted sediment (75.6±2.3%) than sediment-free controls (93.1±1.6%) after one growing season. When sorted by sediment thickness categories, the low thickness level (1–19 mm) had significantly greater percent cover than medium (20–39 mm) and high (40–90 mm) categories. Given that sediment accretion in the Great Marsh was found to average 2.7 mm per year, the sediment thickness documented herein represents ~11 years of sediment accretion with only a 25% reduction in plant cover, suggesting this natural sediment event will likely increase long-term marsh resilience to sea level rise.


2019 ◽  
Vol 2 (1) ◽  
pp. 1-20
Author(s):  
S.E. Grenfell ◽  
F. Fortune ◽  
M.F. Mamphoka ◽  
N. Sanderson

We investigate coastal wetland ecosystem resilience to sea level rise by modelling sea level rise trajectories and the impact on vegetation communities for a coastal wetland in South Africa. The rate of sediment accretion was modelled relative to IPCC sea level rise estimates for multiple RCP scenarios. For each scenario, inundation by neap and spring tide and the 2, 4, and 8 year recurrence interval water level was modelled over a period of 200 years. When tidal variation is considered, the rate of sediment accretion exceeds rising sea levels associated with climate change, resulting in no major changes in terms of inundation. When sea level rise scenarios were modelled in conjunction with recurrence interval water levels, flooding of the coastal wetland was much greater than current levels at 1 in 4 and 1 in 8 year events. In the long term, increases in salinity may cause a reduction in Phragmites australis cover. Very small increases in depth and frequency of inundation are likely to cause an expansion of samphire species at the expense of Juncus spp. The study suggests that for this wetland, variability in flow may be a key factor in balancing wetland resilience.


Eos ◽  
2020 ◽  
Vol 101 ◽  
Author(s):  
Kate Wheeling

Researchers identify the main sources of uncertainty in projections of global glacier mass change, which is expected to add about 8–16 centimeters to sea level, through this century.


Sign in / Sign up

Export Citation Format

Share Document