spring tide
Recently Published Documents


TOTAL DOCUMENTS

258
(FIVE YEARS 70)

H-INDEX

26
(FIVE YEARS 2)

2022 ◽  
Vol 10 (1) ◽  
pp. 72
Author(s):  
Rui Ma ◽  
Jianrong Zhu

In a multilevel bifurcated estuary, the channels between the bifurcated branches play important roles in the exchanges of water and salt. In the Changjiang Estuary, the Hengsha Channel (HC) connects the North Channel (NC) and the North Passage (NP). In this paper, based on a two-way nesting unstructured quadrilateral grid, finite-differencing, three-dimensional estuarine and coastal ocean model, the tidal and seasonal variations in the water and salt transports in the HC were simulated, and their dynamic mechanism was analyzed. The residual water and salt transports in the HC both flow southward from the NC to the NP. In wet season, the residual water transport in the HC is 677 m3/s during neap tide and 245 m3/s during spring tide, and the residual salt transport is 0. In dry season, the residual water and salt transports in the HC are 1278 m3/s and 0.38 t/s during neap tide, respectively, and 1328 m3/s and 12.61 t/s during spring tide. Affected by the northerly wind and the southeastward baroclinic gradient force, the water and salt fluxes in dry season are much larger than those in wet season. The dynamic mechanism responsible for the water transport in the HC was numerically simulated and analyzed.


Water ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 43
Author(s):  
Zifeng Hu ◽  
Guanghao Xie ◽  
Jun Zhao ◽  
Yaping Lei ◽  
Jinchi Xie ◽  
...  

the spatial pattern of the wintertime Pearl River plume front (PRPF), and its variability on diurnal and spring-neap time scales are characterized from the geostationary meteorological Himawari-8 satellite, taking advantage of the satellite’s unique 10-minutely sea surface temperature sequential images. Our findings suggest that the PRPF in winter consists of three subfronts: the northern one north of 22°N 20′, the southern one south of 21°N 40′, and the middle one between 22°N 20′ and 21°N 40′. The time-varying trend of the frontal intensity generally exhibits a strong-weak-strong pattern, with the weakest plume front occurring at about 06:00 UTC, which is closely associated with net surface heat flux over the region. The comparison in frontal variability between the spring and neap tides shows that the plume front during the spring tide generally tends to be more diffuse for the frontal probability, move further offshore for the frontal position, and be weaker for the frontal intensity than those found during the neap tide. These great differences largely depend on the tidally induced stronger turbulent mixing during the spring tide while the wind stress only plays a secondary role in the process. To best of our knowledge, the distinct diurnal variations in PRPF with wide coverage are observed for the first time. This study demonstrates that the Himawari-8 geostationary satellite has great potential in characterizing high-frequency surface thermal fronts in considerable detail.


2021 ◽  
Vol 9 (12) ◽  
pp. 1385
Author(s):  
Ryan J. K. Dunn ◽  
Jordan Glen ◽  
Hsin-Hui Lin ◽  
Sasha Zigic

An understanding of suspended particulate matter (SPM) dynamics is of great importance to design awareness and management strategies of estuaries. Using a Laser In Situ Scattering and Transmissiometry (LISST) instrument, variations in suspended particle size volumetric concentrations (VC) and particle size distributions (PSD) were measured at six sites within Port Curtis estuary (Australia). The port is a macrotidal estuary with significant economic and environmental importance. Observed VC and SPM sizes demonstrated spatial and temporal trends strongly controlled by the variable energy conditions operating on the neap and spring cycle timescale, with a clear trend towards increasing concentrations and decreasing SPM sizes with increasing tidal ranges. Mid-estuary sites were characterized by the greatest depth-averaged VC under transitional and spring conditions. Estuary-wide mean spring tide total water profile concentrations revealed a near 300% increase in comparison to neap tide condition concentrations. In the upper-estuary sites the mean contribution of the combined 2.5–35 µm size classes to the total profile PSDs was greatest during all tidal conditions, whilst within the lower-estuary site the combined 35–130 µm size classes were greatest. Mean contributions of the largest size class (300–500 µm) dominated surface-waters throughout the estuary during the neap tide period, which when compared with the transitional and spring tide conditions, demonstrated changes of −82% to −48% and −82% to −40%, respectively. Overall, the results from this case study provides further evidence of the important influence of neap and spring tidal regimes on SPM dynamics within estuarine settings and the need to observe parameter dynamics on such timescales.


2021 ◽  
Vol 958 (1) ◽  
pp. 012023
Author(s):  
K Al-Salem ◽  
A Al-Rashed

Abstract Failaka Island is the second-largest and one of the most important islands of Kuwait from the point of view of tourism located in the north Arabian Gulf. It has a marina constructed in 1979 and managed by the Ministry of Communication (MOC) and a tourism enterprise, and is widely used for its ferry landing facility. The coastal waters around Failaka are turbid and current velocities tend to be as high as ~0.5 m/s during spring tide. The marina basin, with axial plan view dimensions of about 285 m by 260 m experiences shoaling of naturally flocculated fine (cohesive) sediment and coarse sand in the entrance channel and more generally in the southern half of the basin. A particularly noteworthy zone of heavy and visible shoaling is along the inner side of the south breakwater close to the entrance. The marina at Failaka Island is suffering from siltation and sediment deposing issues. This study was carried out numerically to assess the annual sedimentation, sediment direction, and longshore current from locations around the existing marina to help in a suggestion of the solutions to reduce the siltation and sediment deposing based on sediments transport direction on marina entrance. A newly developed numerical solution for annual longshore sediments transport was used to estimate the total sediment transport and its direction. The study shows that the annual sediment transport directions which affect the Fialaka marina entrance are coming from the south to north due to wave action.


2021 ◽  
Vol 27 (12) ◽  
pp. 69-86
Author(s):  
Alaa Abdula Ali ◽  
Hayder A Al Thamiry

Shatt Al-Arab River in Al Basrah, Iraq, has recently recorded massive levels of TDS values (Total Dissolved Solids) in the water as a result of reduced fresh water discharge from sources, causing the river to become salinized due to salt wedge intrusion. Therefore, a block dam in the south reach is required to salt intrusion prevention. The main objective of this research is to simulate the hydraulic impact of a suggested barrage in Ras Al Besha on the Shatt Al-Arab River. The HEC-RAS (5.0.7) model was used to develop a one-dimensional unsteady model to gaining an understanding of the proposed barrage's influence on river behaviour. The daily discharges of the Tigris River provided as the upstream boundary conditions, while the hourly water levels of the Shatt Al-Arab River provided as the downstream boundary conditions. The model was initially run on the basis of daily discharges in Aug 2018 and March 2020 for the model's calibration and verification. Then, a model was run with a proposed barrage, Four cases of discharge were chosen which were the low and moderate discharge that equal to (20-50-100 and 250) m3/s with adopted spring tide cycle. The operation scenarios were examined under the influence of three cases of barrage gates (fully opened, 50% open and programmed opening). The results indicate that the investigated discharges will cause a significant problems in navigation depths, especially in the case of the programming of gates opening where the stages drop range between 2.01-3.3m comparing with the normal case. Furthermore, the velocity indicators show that the significant reduction in velocity upstream the barrage led to more sedimentation in the river reach.


MAUSAM ◽  
2021 ◽  
Vol 48 (4) ◽  
pp. 541-554
Author(s):  
ZENGHAO QIN

Based on both the historical tidal gauge and ground subsidence records for the seven stations in Shanghai region, a non-linear statistical model fitting the variation of the mean annual eustatic sea level (ESL) is established to reveal the characteristics of the ESL in the past century and to estimate the mean annual relative sea level (RSL) in the next five decades by the model extrapolation for Shanghai region. The estimated values of the sea level rises are assessed to be fairly reasonable. The impact of the estimated sea level rise in the coming decades on the storm surges and tides in Shanghai region is numerically computed by using the two-dimensional nonlinear storm surge and tide dynamic models. In addition, on the basis of numerical integration of the same dynamic model, the probable maximum water levels resulting from the RSL in the coming decades are also estimated by the probable optimal combination of the track, intensity, landfall site, incident angle of tropical cyclone and spring tide.  


2021 ◽  
Author(s):  
Elke M. I. Meyer ◽  
Ralf Weisse ◽  
Iris Grabemann ◽  
Birger Tinz ◽  
Robert Scholz

Abstract. Storm tides represent a major threat to the low-lying German North Sea coast. Knowledge of extremes is essential for the design of reliable and robust coastal defences. A storm tide that occurred on 12–13 March 1906 along the German Bight coastline still represents one of the strongest events on record. For this event, detailed knowledge of atmospheric and hydrodynamic conditions is still lacking. To assess the potential impact of such an event on today’s coastline, century-long atmospheric reanalysis data together with a manual synoptic reconstruction based on archived weather data were used to drive a tide-surge model and to simulate water levels during the event. Sensitivity experiments were performed to estimate potential amplification of water levels that could have been caused by different time lags between the storm and the astronomical tide. Comparison between the model results and the limited available observational data indicated, that the water levels could be reasonably reconstructed using wind fields from the manual synoptic approach and some of the reanalysis ensemble members. The amplification potential was found to be low because the storm occurred during spring tide and shifts in the phase of the astronomic tide yielded only small changes in total water levels. To summarize, if pressure data are available at relevant locations, historical storm surges can be simulated with reanalysis products and also with a manual synoptic reconstruction.


2021 ◽  
Author(s):  
◽  
Helen M Tribe

<p>Sand-dominated barriers are highly sensitive coastal systems which alter their morphology in response to rising sea level, undergoing extensive sediment reworking as wave activity reaches further inland. Farewell Spit, South Island, New Zealand, is a sand-dominated barrier spit which extends 25kms eastward from the mainland, enclosing the northwestern corner of the macro-tidal Golden Bay. During spring tide cycles low-lying areas of the Spit become completely inundated. The aim of this study is to establish the morphological stability of Farewell Spit and its potential response to the latest IPCC projected eustatic sea-level rise of 0.48m (A1B scenario) by the end of this century. GIS analysis of aerial photographs and the identification of 137Cs signatures within the dunes have shown a high degree of mobility in the Spit's features over the past 55 years. Vegetation increased by 75%, mainly due to the introduction of A arenaria, which has also led to the development of foredunes prograding up to 142m over the tidal flats. Barchan dunes on the Spit are also highly mobile migrating at up to 30m/y. The high amount of sediment movement along the spit is reflected in the sedimentology of the tidal flats, which show layers of aeolian transported fine, well-sorted sand several centimetres thick. The predominance of medium sand shows that reworking appears to have occurred on these flats due to storm events in Golden Bay, and like the dunes, 14C dating indicates they are very young features Projected sea-level rise was modelled to assess the vulnerability of low-lying areas of the Spit to tidal flooding. Deeper water levels in the two tidal channels which currently flood across the Spit are expected and there is a risk of additional channels opening, one being very near to the contact between the Spit and mainland. The mobility of the dune systems may however buffer some of these processes by providing natural defences against the sea. Barrier roll over does not appear to be an important process as it appears to be too wide to allow for washover. It is concluded that under current sea-level rise predictions Farewell Spit will not transgress landward but will be subject to exacerbated erosion.</p>


2021 ◽  
Author(s):  
◽  
Helen M Tribe

<p>Sand-dominated barriers are highly sensitive coastal systems which alter their morphology in response to rising sea level, undergoing extensive sediment reworking as wave activity reaches further inland. Farewell Spit, South Island, New Zealand, is a sand-dominated barrier spit which extends 25kms eastward from the mainland, enclosing the northwestern corner of the macro-tidal Golden Bay. During spring tide cycles low-lying areas of the Spit become completely inundated. The aim of this study is to establish the morphological stability of Farewell Spit and its potential response to the latest IPCC projected eustatic sea-level rise of 0.48m (A1B scenario) by the end of this century. GIS analysis of aerial photographs and the identification of 137Cs signatures within the dunes have shown a high degree of mobility in the Spit's features over the past 55 years. Vegetation increased by 75%, mainly due to the introduction of A arenaria, which has also led to the development of foredunes prograding up to 142m over the tidal flats. Barchan dunes on the Spit are also highly mobile migrating at up to 30m/y. The high amount of sediment movement along the spit is reflected in the sedimentology of the tidal flats, which show layers of aeolian transported fine, well-sorted sand several centimetres thick. The predominance of medium sand shows that reworking appears to have occurred on these flats due to storm events in Golden Bay, and like the dunes, 14C dating indicates they are very young features Projected sea-level rise was modelled to assess the vulnerability of low-lying areas of the Spit to tidal flooding. Deeper water levels in the two tidal channels which currently flood across the Spit are expected and there is a risk of additional channels opening, one being very near to the contact between the Spit and mainland. The mobility of the dune systems may however buffer some of these processes by providing natural defences against the sea. Barrier roll over does not appear to be an important process as it appears to be too wide to allow for washover. It is concluded that under current sea-level rise predictions Farewell Spit will not transgress landward but will be subject to exacerbated erosion.</p>


2021 ◽  
Author(s):  
◽  
Donald John Jellyman

<p>The early freshwater life of the two species of New Zealand freshwater eels, Anguilla australis schmidtii Phillipps and A. dieffenbachii Gray was studied involving an examination of 8131 glass-eels, 5275 migratory elvers, and 4291 resident eels of less than 26 cm. Most eels were collected from the Makara Stream, Wellington by set-net, hand-net and electric fishing. These extensive samples together with subsidiary collections from elsewhere in New Zealand show that glass-eels of both species arrive in fresh-water from July to December. Their otoliths indicate a marine larval life of about 18 months but it is not possible as yet to locate the precise oceanic spawning areas. Migratory movements of glass-eels are in two phases: an invasion of fresh-water from the sea and an upstream migration. The former occurs only at night with a periodicity corresponding to the daily ebb-flood tidal rhythms. There is a seasonal reversal in this response which is attributable to the onset of the behavioural transition taking place prior to the second migratory phase. Increased pigmentation and changes in response to light, flowing fresh-water and schooling tendencies characterise this latter migration which occurs primarily at spring tide periods. Such juvenile eels show specific habitat preferences and a high degree of olfactory differentiation of water types. This behaviour, together with pigment development and physical tolerances, was studied in the laboratory. Measurements of invading glass-eels show that mean length, weight and condition all decline throughout the season of arrival but mean vertebral numbers remain constant. An upstream migration of small eels (elvers) occurs each summer and is readily observed at many hydro-electric stations. These migrations, comprising eels of mixed sizes and age groups, penetrate progressively further upstream each year. In both species, scales begin formation at body lengths of 16.5-20 cm. All features of scale formation, including the number of scale rings, are related to length with relative differences in rate of development occurring between the species. In contrast to scale rings, otolith rings are annual in formation and become visible after grinding or burning the otolith. Growth rates established for 273 eels to 29 cm in length from the Makara Stream, Wellington, are slow, with mean annual increments of 2.2 and 2.1 cm respectively for shortfins and longfins. In contrast, shortfins from a coastal lake near Wellington reach 26 cm in their third year of freshwater life. Length-weight relationships for small eels are given together with mean monthly condition factors. Growth studies on elvers held in a multiple tank unit in which temperature, density, and amount and frequency of feeding could be controlled, show that young eels grow more slowly than normal under such conditions. However, growth appears optimum at 20 degrees C with a feeding rate of 5-7% body weight per day. Feeding efficiency decreases with higher temperatures. At both glass-eel and elver stages, shortfins adapt and survive better under artificial conditions.</p>


Sign in / Sign up

Export Citation Format

Share Document