organic carbon burial
Recently Published Documents


TOTAL DOCUMENTS

227
(FIVE YEARS 100)

H-INDEX

41
(FIVE YEARS 5)

2022 ◽  
Vol 3 (1) ◽  
Author(s):  
Katharine M. Grant ◽  
Udara Amarathunga ◽  
Jessica D. Amies ◽  
Pengxiang Hu ◽  
Yao Qian ◽  
...  

AbstractDark organic-rich layers (sapropels) have accumulated in Mediterranean sediments since the Miocene due to deep-sea dysoxia and enhanced carbon burial at times of intensified North African run-off during Green Sahara Periods (GSPs). The existence of orbital precession-dominated Saharan aridity/humidity cycles is well known, but lack of long-term, high-resolution records hinders understanding of their relationship with environmental evolution. Here we present continuous, high-resolution geochemical and environmental magnetic records for the Eastern Mediterranean spanning the past 5.2 million years, which reveal that organic burial intensified 3.2 Myr ago. We deduce that fluvial terrigenous sediment inputs during GSPs doubled abruptly at this time, whereas monsoon run-off intensity remained relatively constant. We hypothesize that increased sediment mobilization resulted from an abrupt non-linear North African landscape response associated with a major increase in arid:humid contrasts between GSPs and intervening dry periods. The timing strongly suggests a link to the onset of intensified northern hemisphere glaciation.


2022 ◽  
Author(s):  
Nina Papadomanolaki ◽  
et al.

Supplemental information and methods, Figures S1–S4, and Tables S1 and S2.<br>


2022 ◽  
Author(s):  
Nina Papadomanolaki ◽  
et al.

Supplemental information and methods, Figures S1–S4, and Tables S1 and S2.<br>


2021 ◽  
Vol 17 (6) ◽  
pp. 2515-2536
Author(s):  
Rebekah A. Stein ◽  
Nathan D. Sheldon ◽  
Sarah E. Allen ◽  
Michael E. Smith ◽  
Rebecca M. Dzombak ◽  
...  

Abstract. As atmospheric carbon dioxide (CO2) and temperatures increase with modern climate change, ancient hothouse periods become a focal point for understanding ecosystem function under similar conditions. The early Eocene exhibited high temperatures, high CO2 levels, and similar tectonic plate configuration as today, so it has been invoked as an analog to modern climate change. During the early Eocene, the greater Green River Basin (GGRB) of southwestern Wyoming was covered by an ancient hypersaline lake (Lake Gosiute; Green River Formation) and associated fluvial and floodplain systems (Wasatch and Bridger formations). The volcaniclastic Bridger Formation was deposited by an inland delta that drained from the northwest into freshwater Lake Gosiute and is known for its vast paleontological assemblages. Using this well-preserved basin deposited during a period of tectonic and paleoclimatic interest, we employ multiple proxies to study trends in provenance, parent material, weathering, and climate throughout 1 million years. The Blue Rim escarpment exposes approximately 100 m of the lower Bridger Formation, which includes plant and mammal fossils, solitary paleosol profiles, and organic remains suitable for geochemical analyses, as well as ash beds and volcaniclastic sandstone beds suitable for radioisotopic dating. New 40Ar / 39Ar ages from the middle and top of the Blue Rim escarpment constrain the age of its strata to ∼ 49.5–48.5 Myr ago during the “falling limb” of the early Eocene Climatic Optimum. We used several geochemical tools to study provenance and parent material in both the paleosols and the associated sediments and found no change in sediment input source despite significant variation in sedimentary facies and organic carbon burial. We also reconstructed environmental conditions, including temperature, precipitation (both from paleosols), and the isotopic composition of atmospheric CO2 from plants found in the floral assemblages. Results from paleosol-based reconstructions were compared to semi-co-temporal reconstructions made using leaf physiognomic techniques and marine proxies. The paleosol-based reconstructions (near the base of the section) of precipitation (608–1167 mm yr−1) and temperature (10.4 to 12.0 ∘C) were within error of, although lower than, those based on floral assemblages, which were stratigraphically higher in the section and represented a highly preserved event later in time. Geochemistry and detrital feldspar geochronology indicate a consistent provenance for Blue Rim sediments, sourcing predominantly from the Idaho paleoriver, which drained the active Challis volcanic field. Thus, because there was neither significant climatic change nor significant provenance change, variation in sedimentary facies and organic carbon burial likely reflected localized geomorphic controls and the relative height of the water table. The ecosystem can be characterized as a wet, subtropical-like forest (i.e., paratropical) throughout the interval based upon the floral humidity province and Holdridge life zone schemes. Given the mid-paleolatitude position of the Blue Rim escarpment, those results are consistent with marine proxies that indicate that globally warm climatic conditions continued beyond the peak warm conditions of the early Eocene Climatic Optimum. The reconstructed atmospheric δ13C value (−5.3 ‰ to −5.8 ‰) closely matches the independently reconstructed value from marine microfossils (−5.4 ‰), which provides confidence in this reconstruction. Likewise, the isotopic composition reconstructed matches the mantle most closely (−5.4 ‰), agreeing with other postulations that warming was maintained by volcanic outgassing rather than a much more isotopically depleted source, such as methane hydrates.


2021 ◽  
Author(s):  
Madison M. Douglas ◽  
Gen K. Li ◽  
Woodward W. Fischer ◽  
Joel C. Rowland ◽  
Preston C. Kemeny ◽  
...  

Abstract. Arctic river systems erode permafrost in their banks and mobilize particulate organic carbon (OC). Meandering rivers can entrain particulate OC from permafrost many meters below the depth of annual thaw, potentially enabling OC oxidation and the production of greenhouse gases. However, the amount and fate of permafrost OC that is mobilized by river erosion is uncertain. To constrain OC fluxes due to riverbank erosion and deposition, we collected riverbank and floodplain sediment samples along the Koyukuk River, which meanders through discontinuous permafrost in central Alaska. We measured sediment total OC (TOC), radiocarbon content, water content, bulk density, grain size, and floodplain stratigraphy. Radiocarbon abundance and TOC were higher in samples dominated by silt as compared to sand, which we used to map OC content onto floodplain stratigraphy and estimate carbon fluxes due to river meandering. Results showed that sediment being eroded from cutbanks and deposited as point bars had similar OC stocks (mean ± 1SD of 125.3 ± 13.1 kgOC m−2 in cutbanks versus 114.0 ± 15.7 kgOC m−2 in point bars) whether or not the banks contained permafrost. We also observed radiocarbon-depleted biospheric OC in both cutbanks and permafrost-free point bars. These results indicate that a significant fraction of aged biospheric OC that is liberated from floodplains by bank erosion is subsequently re-deposited in point bars, rather than being oxidized. The process of aging, erosion, and re-deposition of floodplain organic material may be intrinsic to river-floodplain dynamics, regardless of permafrost content.


CATENA ◽  
2021 ◽  
Vol 206 ◽  
pp. 105462
Author(s):  
Jiqing Yin ◽  
Wenxiang Zhang ◽  
Tiantian Liu ◽  
Shunrong Ma ◽  
Qiushi Liang ◽  
...  

2021 ◽  
Vol 18 (17) ◽  
pp. 4965-4984
Author(s):  
Gerard J. M. Versteegh ◽  
Andrea Koschinsky ◽  
Thomas Kuhn ◽  
Inken Preuss ◽  
Sabine Kasten

Abstract. Exchange of dissolved substances at the sediment–water interface provides an important link between the short-term and long-term geochemical cycles in the ocean. A second, as yet poorly understood sediment–water exchange is supported by low-temperature circulation of seawater through the oceanic basement underneath the sediments. From the basement, upwards diffusing oxygen and other dissolved species modify the sediment, whereas reaction products diffuse from the sediment down into the basement where they are transported by the basement fluid and released to the ocean. Here, we investigate the impact of this “second” route with respect to transport, release and consumption of oxygen, nitrate, manganese, nickel and cobalt on the basis of sediment cores retrieved from the Clarion Clipperton Zone (CCZ) in the equatorial Pacific Ocean. We show that in this abyssal ocean region characterised by low organic carbon burial and sedimentation rates vast areas exist where the downward- and upward-directed diffusive fluxes of oxygen meet so that the sediments are oxic throughout. This is especially the case where sediments are thin or in the proximity of faults. Oxygen diffusing upward from the basaltic crust into the sediment contributes to the degradation of sedimentary organic matter. Where the sediments are entirely oxic, nitrate produced in the upper sediment by nitrification is lost both by upward diffusion into the bottom water and by downward diffusion into the fluids circulating within the basement. Where the oxygen profiles do not meet, they are separated by a suboxic sediment interval characterised by Mn2+ in the porewater. Where porewater Mn2+ in the suboxic zones remains low, nitrate consumption is low and the sediment continues to deliver nitrate to the ocean bottom waters and basement fluid. We observe that at elevated porewater manganese concentrations, nitrate consumption exceeds production and nitrate diffuses from the basement fluid into the sediment. Within the suboxic zone, not only manganese but also cobalt and nickel are released into the porewater by reduction of Mn oxides, diffusing towards the oxic–suboxic fronts above and below where they precipitate, effectively removing these metals from the suboxic zone and concentrating them at the two oxic–suboxic redox boundaries. We show that not only do diffusive fluxes in the top part of deep-sea sediments modify the geochemical composition over time but also diffusive fluxes of dissolved constituents from the basement into the bottom layers of the sediment. Hence, the palaeoceanographic interpretation of sedimentary layers should carefully consider such deep secondary modifications in order to prevent the misinterpretation of primary signatures.


2021 ◽  
Vol 118 (37) ◽  
pp. e2014701118
Author(s):  
Ying Cui ◽  
Mingsong Li ◽  
Elsbeth E. van Soelen ◽  
Francien Peterse ◽  
Wolfram M. Kürschner

The end-Permian mass extinction event (∼252 Mya) is associated with one of the largest global carbon cycle perturbations in the Phanerozoic and is thought to be triggered by the Siberian Traps volcanism. Sizable carbon isotope excursions (CIEs) have been found at numerous sites around the world, suggesting massive quantities of 13C-depleted CO2 input into the ocean and atmosphere system. The exact magnitude and cause of the CIEs, the pace of CO2 emission, and the total quantity of CO2, however, remain poorly known. Here, we quantify the CO2 emission in an Earth system model based on new compound-specific carbon isotope records from the Finnmark Platform and an astronomically tuned age model. By quantitatively comparing the modeled surface ocean pH and boron isotope pH proxy, a massive (∼36,000 Gt C) and rapid emission (∼5 Gt C yr−1) of largely volcanic CO2 source (∼−15%) is necessary to drive the observed pattern of CIE, the abrupt decline in surface ocean pH, and the extreme global temperature increase. This suggests that the massive amount of greenhouse gases may have pushed the Earth system toward a critical tipping point, beyond which extreme changes in ocean pH and temperature led to irreversible mass extinction. The comparatively amplified CIE observed in higher plant leaf waxes suggests that the surface waters of the Finnmark Platform were likely out of equilibrium with the initial massive centennial-scale release of carbon from the massive Siberian Traps volcanism, supporting the rapidity of carbon injection. Our modeling work reveals that carbon emission pulses are accompanied by organic carbon burial, facilitated by widespread ocean anoxia.


Sign in / Sign up

Export Citation Format

Share Document