scholarly journals Coastal wetland resilience to climate change: modelling ecosystem response to rising sea level and salinity in a variable climate

2019 ◽  
Vol 2 (1) ◽  
pp. 1-20
Author(s):  
S.E. Grenfell ◽  
F. Fortune ◽  
M.F. Mamphoka ◽  
N. Sanderson

We investigate coastal wetland ecosystem resilience to sea level rise by modelling sea level rise trajectories and the impact on vegetation communities for a coastal wetland in South Africa. The rate of sediment accretion was modelled relative to IPCC sea level rise estimates for multiple RCP scenarios. For each scenario, inundation by neap and spring tide and the 2, 4, and 8 year recurrence interval water level was modelled over a period of 200 years. When tidal variation is considered, the rate of sediment accretion exceeds rising sea levels associated with climate change, resulting in no major changes in terms of inundation. When sea level rise scenarios were modelled in conjunction with recurrence interval water levels, flooding of the coastal wetland was much greater than current levels at 1 in 4 and 1 in 8 year events. In the long term, increases in salinity may cause a reduction in Phragmites australis cover. Very small increases in depth and frequency of inundation are likely to cause an expansion of samphire species at the expense of Juncus spp. The study suggests that for this wetland, variability in flow may be a key factor in balancing wetland resilience.

2013 ◽  
Vol 6 (2) ◽  
pp. 81-87 ◽  
Author(s):  
T. L. A. Driessen ◽  
M. van Ledden

Abstract. The objective of this paper was to describe the impact of climate change on the Mississippi River flood hazard in the New Orleans area. This city has a unique flood risk management challenge, heavily influenced by climate change, since it faces flood hazards from multiple geographical locations (e.g. Lake Pontchartrain and Mississippi River) and multiple sources (hurricane, river, rainfall). Also the low elevation and significant subsidence rate of the Greater New Orleans area poses a high risk and challenges the water management of this urban area. Its vulnerability to flooding became dramatically apparent during Hurricane Katrina in 2005 with huge economic losses and a large number of casualties. A SOBEK Rural 1DFLOW model was set up to simulate the general hydrodynamics. This model included the two important spillways that are operated during high flow conditions. A weighted multi-criteria calibration procedure was performed to calibrate the model for high flows. Validation for floods in 2011 indicated a reasonable performance for high flows and clearly demonstrated the influence of the spillways. 32 different scenarios were defined which included the relatively large sea level rise and the changing discharge regime that is expected due to climate change. The impact of these scenarios on the water levels near New Orleans were analysed by the hydrodynamic model. Results showed that during high flows New Orleans will not be affected by varying discharge regimes, since the presence of the spillways ensures a constant discharge through the city. In contrary, sea level rise is expected to push water levels upwards. The effect of sea level rise will be noticeable even more than 470 km upstream. Climate change impacts necessitate a more frequent use of the spillways and opening strategies that are based on stages.


2019 ◽  
Vol 19 (8) ◽  
pp. 1601-1618
Author(s):  
Kai Parker ◽  
David Hill ◽  
Gabriel García-Medina ◽  
Jordan Beamer

Abstract. Climate change impacts on extreme water levels (WLs) at two United States Pacific Northwest estuaries are investigated using a multicomponent process-based modeling framework. The integrated impact of climate change on estuarine forcing is considered using a series of sub-models that track changes to oceanic, atmospheric, and hydrologic controls on hydrodynamics. This modeling framework is run at decadal scales for historic (1979–1999) and future (2041–2070) periods with changes to extreme WLs quantified across the two study sites. It is found that there is spatial variability in extreme WLs at both study sites with all recurrence interval events increasing with further distance into the estuary. This spatial variability is found to increase for the 100-year event moving into the future. It is found that the full effect of sea level rise is mitigated by a decrease in forcing. Short-recurrence-interval events are less buffered and therefore more impacted by sea level rise than higher-return-interval events. Finally, results show that annual extremes at the study sites are defined by compound events with a variety of forcing contributing to high WLs.


MAUSAM ◽  
2021 ◽  
Vol 48 (4) ◽  
pp. 541-554
Author(s):  
ZENGHAO QIN

Based on both the historical tidal gauge and ground subsidence records for the seven stations in Shanghai region, a non-linear statistical model fitting the variation of the mean annual eustatic sea level (ESL) is established to reveal the characteristics of the ESL in the past century and to estimate the mean annual relative sea level (RSL) in the next five decades by the model extrapolation for Shanghai region. The estimated values of the sea level rises are assessed to be fairly reasonable. The impact of the estimated sea level rise in the coming decades on the storm surges and tides in Shanghai region is numerically computed by using the two-dimensional nonlinear storm surge and tide dynamic models. In addition, on the basis of numerical integration of the same dynamic model, the probable maximum water levels resulting from the RSL in the coming decades are also estimated by the probable optimal combination of the track, intensity, landfall site, incident angle of tropical cyclone and spring tide.  


2019 ◽  
Author(s):  
Kai Parker ◽  
David Hill ◽  
Gabriel García-Medina ◽  
Jordan Beamer

Abstract. Climate change impacts to extreme water levels (WLs) at two United States Pacific Northwest estuaries are investigated using a multi-component process-based modeling framework. The integrated impact of climate change on estuarine forcing is considered using a series of sub-models that track changes to oceanic, atmospheric, and hydrologic controls on hydrodynamics. This modeling framework is run at decadal scales for historic and future periods with changes to extreme WLs quantified across the two study sites. It is found that there is spatial variability in extreme WLs at both study sites with all recurrence interval events increasing with further distance into the estuary. This spatial variability is found to increase for the 100-year event moving into the future. It is found that the full effect of sea level rise is mitigated by a decrease in forcing. Short recurrence interval events are less buffered and therefore more impacted by sea level rise than higher return interval events. Finally, results show that annual extremes at the study sites are defined by compound events with a variety of forcing contributing to high WLs.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Benjamin H. Strauss ◽  
Philip M. Orton ◽  
Klaus Bittermann ◽  
Maya K. Buchanan ◽  
Daniel M. Gilford ◽  
...  

AbstractIn 2012, Hurricane Sandy hit the East Coast of the United States, creating widespread coastal flooding and over $60 billion in reported economic damage. The potential influence of climate change on the storm itself has been debated, but sea level rise driven by anthropogenic climate change more clearly contributed to damages. To quantify this effect, here we simulate water levels and damage both as they occurred and as they would have occurred across a range of lower sea levels corresponding to different estimates of attributable sea level rise. We find that approximately $8.1B ($4.7B–$14.0B, 5th–95th percentiles) of Sandy’s damages are attributable to climate-mediated anthropogenic sea level rise, as is extension of the flood area to affect 71 (40–131) thousand additional people. The same general approach demonstrated here may be applied to impact assessments for other past and future coastal storms.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 545
Author(s):  
Alexis K. Mills ◽  
Peter Ruggiero ◽  
John P. Bolte ◽  
Katherine A. Serafin ◽  
Eva Lipiec

Coastal communities face heightened risk to coastal flooding and erosion hazards due to sea-level rise, changing storminess patterns, and evolving human development pressures. Incorporating uncertainty associated with both climate change and the range of possible adaptation measures is essential for projecting the evolving exposure to coastal flooding and erosion, as well as associated community vulnerability through time. A spatially explicit agent-based modeling platform, that provides a scenario-based framework for examining interactions between human and natural systems across a landscape, was used in Tillamook County, OR (USA) to explore strategies that may reduce exposure to coastal hazards within the context of climate change. Probabilistic simulations of extreme water levels were used to assess the impacts of variable projections of sea-level rise and storminess both as individual climate drivers and under a range of integrated climate change scenarios through the end of the century. Additionally, policy drivers, modeled both as individual management decisions and as policies integrated within adaptation scenarios, captured variability in possible human response to increased hazards risk. The relative contribution of variability and uncertainty from both climate change and policy decisions was quantified using three stakeholder relevant landscape performance metrics related to flooding, erosion, and recreational beach accessibility. In general, policy decisions introduced greater variability and uncertainty to the impacts of coastal hazards than climate change uncertainty. Quantifying uncertainty across a suite of coproduced performance metrics can help determine the relative impact of management decisions on the adaptive capacity of communities under future climate scenarios.


2021 ◽  
Vol 23 (2-3) ◽  
pp. 115-132
Author(s):  
Łukasz Kułaga

Abstract The increase in sea levels, as a result of climate change in territorial aspect will have a potential impact on two major issues – maritime zones and land territory. The latter goes into the heart of the theory of the state in international law as it requires us to confront the problem of complete and permanent disappearance of a State territory. When studying these processes, one should take into account the fundamental lack of appropriate precedents and analogies in international law, especially in the context of the extinction of the state, which could be used for guidance in this respect. The article analyses sea level rise impact on baselines and agreed maritime boundaries (in particular taking into account fundamental change of circumstances rule). Furthermore, the issue of submergence of the entire territory of a State is discussed taking into account the presumption of statehood, past examples of extinction of states and the importance of recognition in this respect.


2021 ◽  
Author(s):  
Evgeniya Panchenko ◽  
Andrei Alabyan ◽  
Inna Krylenko ◽  
Serafima Lebedeva

<p>Possible sea level rise and changes in hydrological regime of rivers are the major threats to estuarine systems. The sensibility of hydrodynamic regime of the Northern Dvina delta and the Onega estuary under various scenarios of climate change has been investigated. Hydrodynamic models HEC-RAS (USA, US Army Corps of Engineers Hydrologic Engineering Center) and STREAM_2D (Russia, authors V.Belikov et.al.) were used for analysis of estuarine flow regime (variations of water levels, discharges and flow velocities throughout tidal cycles). Input runoff changes were simulated for different climate scenarios using ECOMAG model (Russia, author Yu.Motovilov) based on data of global climate models (GSM) of CMIP5 project for the White Sea region.</p><p>ECOMAG modelling has demonstrated that the maximum river discharges averaged for 30-year period 2036 – 2065 can reduce for about 20 – 27% for the Onega and 15 – 20% for the Northern Dvina river compared against the historical period 1971 – 2000.Averaged minimum river discharges can reduce for about 33 – 45% for the Onega and 30 – 40% for the Northern Dvina.</p><p>The White Sea level rise by 0.27 m in average (with inter-model variation from 0.20 to 0.38 m) can took place by the middle of the XXI century according to input data of GSM models. The 12 scenarios of estuarine hydrodynamic changes were simulated for the both rivers based on combining river runoff changes and sea level elevation.</p><p>In general, the expected flow changes are negative for the local industry and population. According to modelling results for ‘high runoff/spring tide’ scenarios the flooding area in the Northern Dvina delta will increase by 13-20% depending on the intensity of sea level rise. In the low water seasons the distance from the river mouth to the upper boundary of the reach, where reverse currents can be observed, will move upstream by 8 - 36 km depending of sea/river conditions due to decrease in minimum river runoff. It may adversely effect on shipping conditions at the city of Arkhangelsk and on brackish water intrusion up-to industrial and communal water intakes.</p><p>The reverse currents also will intensify in the Onega estuary (tidal flow velocities increase for 11 – 19%) that leads to the change of the sediment regime and can significantly deteriorate the navigation conditions at the seaport of the Onega town. The problem of the intensification of salt intrusion can arise there as well.</p><p>The research was supported by the Russian Foundation for Basic Research (Projects No. 18- 05-60021 in development of the scenarios; No. 19-35-90032 in providing hydrodynamic modelling of the Onega; Project No. 19-35-60032 in providing hydrodynamic modelling of the Northern Dvina).</p>


Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 95
Author(s):  
Phil J. Watson

This paper provides an Extreme Value Analysis (EVA) of the hourly water level record at Fort Denison dating back to 1915 to understand the statistical likelihood of the combination of high predicted tides and the more dynamic influences that can drive ocean water levels higher at the coast. The analysis is based on the Peaks-Over-Threshold (POT) method using a fitted Generalised Pareto Distribution (GPD) function to estimate extreme hourly heights above mean sea level. The analysis highlights the impact of the 1974 East Coast Low event and rarity of the associated measured water level above mean sea level at Sydney, with an estimated return period exceeding 1000 years. Extreme hourly predictions are integrated with future projections of sea level rise to provide estimates of relevant still water levels at 2050, 2070 and 2100 for a range of return periods (1 to 1000 years) for use in coastal zone management, design, and sea level rise adaptation planning along the NSW coastline. The analytical procedures described provide a step-by-step guide for practitioners on how to develop similar baseline information from any long tide gauge record and the associated limitations and key sensitivities that must be understood and appreciated in applying EVA.


Sign in / Sign up

Export Citation Format

Share Document