scholarly journals Systematization of the Brain Base Arteries in Nutria (Myocastor coypus)

2018 ◽  
Vol 46 (1) ◽  
pp. 9
Author(s):  
Rodrigo Cavalcanti De Azambuja ◽  
Laura Ver Goltz ◽  
Rui Campos

Background: The nutria (Myocastor coypus) is a medium-size, semi-aquatic rodent, valued in skin and meat industry. The brain circulation has been well studied in rodents but not in nutria. To understand and compare the phylogenetic development of the arteries of the base of the brain in rodents, this paper aims to describe and systematize these arteries, establishing a standard model and its main variations in nutria.Materials, Methods & Results: Following approval by the Ethics Committee of Federal University of Rio Grande do Sul, thirty nutrias from a commercial establishment authorized by Brazilian Institute of Environment and Natural Resources (IBAMA) were studied. For euthanasia, was applied heparin (10000 U.I for animal), intraperitoneally, and after thirty minutes the animals ware sedated with acepromazine (0.5 mg/kg) and meperidine (20 mg/kg), intramuscularly. After sedation, they were euthanized with thiopental sodium (120 mg/kg) and lidocaine (10 mg/mL), intraperitoneally. The heart was accessed, the cardiac apex was sectioned, the aorta was cannulated via the left ventricle and clamped close to the diaphragm, and the arterial system was washed with saline solution and filled with latex. The animals were submerged in water for latex polymerization, the trunk was sectioned, the skin removed and a bony window was opened in the skull vault. The pieces were fixed in formaldehyde. The brains were removed, and schematic drawings of the arteries from the base of the brain were made for elaboration of the results. The nutria’s brain was vascularized by the vertebro-basilar system. The terminal branches of the right and left vertebral artery were anastomosed on the ventral surface of the medulla oblongata, forming the basilar artery, and caudally the ventral spinal artery. The basilar artery formed collateral branches, the caudal and middle cerebellar and trigeminal arteries, and at the height of the rostral pons groove, divided into its two terminal branches, the rostral cerebellar and cerebral caudal arteries. The terminal branches of the basilar artery projected rostrally, forming the hypophyseal and rostral choroid arteries. The basilar artery passed the optic tract and bifurcated in the middle cerebral artery, its last collateral branch, and in the rostral cerebral artery, its terminal branch. The rostral cerebral artery formed the medial branch, closing the cerebral arterial circle caudally in 40% of the cases.Discussion: In rodents, variability of the cerebral arterial circle was observed due to the degree of atrophy of the internal carotid artery. The basilar artery was a rectilinear vessel of great caliber in all described rodents, and in rodents with a vertebro-basilar system, it was divided into its terminal branches after crossing the pons, forming the rostral cerebellar, hypophyseal, rostral choroid, caudal, middle and rostral cerebral arteries. The caudal cerebellar artery had variation of origin and sometimes duplication. The median cerebellar artery, a collateral branch of the caudal cerebellar artery, was a branch of the basilar artery in capybara. The caudal cerebral artery had variations between rodents. In capybara, chinchilla and nutria the middle cerebral artery was the collateral branch of the terminal branches of the basilar artery, and distributed on the convex surface of the cerebral hemisphere. The rostral cerebral artery, a branch of the terminal branch of the basilar artery, was a branch of the internal carotid artery in other rodents, forming the medial branch, which was anastomosed with that of the opposite antimer, when present, forming the rostral communicating artery. In nutria, the cerebral arterial circle was closed caudally in all cases, as in other rodents, however, it was opened rostrally in 60% of cases, compared to 70% in chinchilla and 10% in capybara.

2016 ◽  
Vol 37 (2) ◽  
pp. 773-784 ◽  
Author(s):  
Roberto Sávio Bessa da Silva ◽  
◽  
Gleidson Benevides de Oliveira ◽  
Carlos Magno Oliveira Junior ◽  
Ferdinando Vinicius Fernandes Bezerra ◽  
...  

The agouti, a rodent that is geographically distributed throughout South America, is greatly valued for its meat. This paper describes the arterial vascularization of the base of the agouti’s brain, characterizing behavior, and arterial origin and distribution. Ten animals from the Center for the Multiplication of Wild Animals (CEMAS/UFERSA) were used and the study was approved by SISBIO (report number 32413- 1) and the Ethics Committee on Animal Use (CEUA/UFERSA) (protocol 02/2010). After euthanasia, the animals were incised in the thoracic cavity by an injection of red-stained Neoprene latex 650 and the skulls were subsequently opened. The brains were extracted from the skulls for ventral surface analysis and then fixed in an aqueous 10% formaldehyde solution. The agouti’s arterial vascularization of the brain has two main components, namely the carotid and vertebrobasilar systems. The agouti’s carotid system accounts for vascularization of almost the entire forebrain, while the vertebrobasilar system accounts for vascularization of almost the entire posterior brain (medulla oblongata, pyramid, trapezoid body, cerebellum, bridge, and part of the third caudal section of the forebrain) through the caudal cerebral arteries originating from the terminal branches of the basilar artery. The main arteries on the brain surface include the basilar artery, which is unique, and the arterial pairs, specifically the vertebral arteries, cerebellar caudal arteries, trigeminal artery, rostral cerebellar artery, basilar terminal branch artery, cerebral caudal artery, communicating caudal branch of the cerebral carotid artery, cerebral carotid artery, communicating branch rostral cerebral carotid artery, choroidal rostral artery, medial branch of the communicating branch rostral artery, internal ophthalmic artery, middle cerebral artery, and rostral cerebral artery.


2013 ◽  
Vol 33 (6) ◽  
pp. 796-806 ◽  
Author(s):  
Fernanda de Souza ◽  
Rui Campos

The brains of 30 New Zealand rabbits (Oryctolagus cuniculus) were injected with red stained latex. The arteries of the ventral surface of the brain were systematized on the right (R) and on the left (L) side with the respective percentage of appearance: the aortic arch emitted the braquicephalic trunk and the left subclavian artery (83.3%); or the braquicephalic trunk, the left common carotid artery and the left subclavian artery (16.7%). The braquicephalic trunk emitted the right and the left common carotid arteries and the right subclavian artery (83.3%); or the right common carotid artery and the right subclavian artery (16.7%). The common carotid arteries were divided into external and internal carotid arteries (96.7% on the R, 100% on the L.). The internal carotid artery to the R was present (96.7%) and absent (3.3%), and to the L, was present (100%). The rostral choroidal artery to the R was collateral branch of the rostral branch of the internal carotid artery (83.3%), collateral branch of caudal branch of the internal carotid artery (16.7%), and to the L was collateral branch of the rostral branch of the internal carotid artery (93.3%), collateral branch of the caudal branch of the internal carotid artery (6.7%). The middle cerebral artery to the R and to the L was single (80%) and double (20%). The rostral cerebral artery to the R had middle caliber (90%), thin caliber (6.7%) and too thin caliber (3.3%), and to the L had middle caliber (76.7%), thin caliber (16.7%) and too thin caliber (6.7%). The internal ethmoidal artery was absent (73.3%), present and single (26.7%). The caudal cerebral artery to the R was single (66.7%), double (26.7%) and triple (6.7%), and to the L was single (63.3%) and double (36.7%). The terminal branches of the right and left vertebral arteries were present (100%, and formed the basilar artery (100%). The ventral spinal artery was present (100%). The caudal cerebellar artery, to the R was single (43.3%), single with labyrinthic artery isolated (26.7%) and double (30%), and to the L was single (50%), single with labyrinthic artery isolated (6.7%), double (40%) and triple (3.3%). The trigeminal artery to the R and to the L was present (100%). The rostral cerebellar artery to the R was single (53.3%) and double (46,7%), and to the L was single (63.3%) and double (36.7%). The rabbit's cerebral arterial circle was caudally closed (100%) and rostrally closed (93.3%) or opened (6.7%). The brain was supplied by the vertebral-basilar and carotid systems.


1999 ◽  
Vol 23 (1) ◽  
pp. 59-66
Author(s):  
Khalid Kamil Kadhum

The brain of the sheep receives its blood supply through the carotid rete and the basilar artery. The carotid rete formed of contribution of internal carotid artery and branches from maxillary artery. The internal carotid artery courses on the ventral surface of the cerebal crus to give the rostral cerebal artery and the caudal communicating artery . Thus , arteries excepted the middle cerebal artery forming with the same arteries of the opposite side , the cerebal arterial circle or circle of Willis. The internal caroted artery also gives off hypophysialartery to the  1999 ind, (1) swell, ügymielly wel dati', il pellilendiambell ileti  hypophysis. The caudal communicating artery give off the caudal cerebal artery and the rostral cerebellar artery and unite with the corresponding artery of the opposite side to form the basilar artery rostral to the pone . The basilar artery gives off the pontine artery , caudal cerebellar artery and the medullary branch. 


2011 ◽  
Vol 31 (suppl 1) ◽  
pp. 39-46 ◽  
Author(s):  
Amarílis Díaz de Carvalho ◽  
Rui Campos

Thirty heads with neck segments of turkeys (Meleagris gallopavo) were dissected for a systematic study of the arteries. The frequency of the arteries found was: Cerebral carotid artery, intercarotid anastomosis and internal ophthalmic artery (100%). Caudal branch of the cerebral carotid artery to the right (R) vestigial artery (70%) and developed (30%) and to the left (L) developed (70%) and vestigial artery (30%). Ventral tectal mesencephalic artery in (70%) to R and (30%) to L was the direct branch of the cerebral carotid artery to L (70%) and to R (30%) collateral branch of the developed caudal branch. Basilar artery to L in (70%) and to R (30%) formed from the developed caudal branch; rostral ventral cerebellar artery present (86.7%) and absent (13.3%) to R and L. Caudal ventral cerebellar artery to R single (73.3%), double (23.3%) and triple (3.3%); caudal ventral cerebellar artery to L single (73.3%) and double (26.7%). Dorsal spinal artery branch of caudal ventral cerebellar artery to R (80%) and to L (73.3%). The rostral branch of cerebral carotid artery showed as collateral branches the single caudal cerebral artery to R (100%) and to L (96.7%) while in (3.3%) it was double. The middle cerebral artery was single to R and L (100%). Cerebroethmoidal artery to R and L (100%) with its collateral branch to single rostral cerebral artery (90%) to R and (86.7%) to L and double (10%) to R and (13.3%) to L. Ethmoidal artery to R and to L (100%) single. The cerebral arterial circle was rostrally and caudally opened, so that the cerebral blood supply was exclusively made by the carotid system.


2020 ◽  
Vol 40 (4) ◽  
pp. 315-323
Author(s):  
Dayane Kelly Sabec-Pereira ◽  
Fabiano C. Lima ◽  
Fabiano R. Melo ◽  
Fabiana Cristina S.A. Melo ◽  
Kleber Fernando Pereira ◽  
...  

ABSTRACT: We studied the arterial circle in the brain of five specimens of the Alouatta belzebul primate. The material had the arterial system perfused (water at 40°C), injected with stained latex (Neoprene 650), fixed in aqueous formaldehyde solution (10%) and dissected for vessel verification. The arterial circle of this primate is composed of two vascular systems: the vertebra-basilar and the carotid ones, which anastomose to close the arterial circuit. In the caudal portion of the arterial circle, there are the vertebral arteries and their branches: the rostral spinal artery and the caudal inferior cerebellar artery. The anastomosis of the vertebral arteries gives rise to the basilar artery. It presented an anatomical variation at the beginning of its path, forming a double basilar artery, called arterial island. In its course, it emitted branches giving rise to the rostral inferior cerebellar artery, the pontine arteries, the rostral cerebellar arteries, the satellite rostral cerebellar arteries and its terminal branch, the caudal cerebral artery, which presented itself in two segments: the pre-communicating one and post-communicating, joining the internal carotid artery and originating the caudal communicating artery. This group of arteries and anastomoses enclose the caudal portion of the arterial circle. From the right and left internal carotid arteries begins the rostral portion of the arterial circle, which consists of the right and left rostral cerebral arteries and the right and left middle cerebral arteries. The rostral cerebral arteries anastomose into a single trunk, giving rise to the interhemispheric artery, and in A. belzebul and Sapajus libidinosus, the rostral communicating artery is absent. The interhemispheric artery goes to the midbrain region and the corpus callosum knee divides into pericalous artery and callosarginal artery, which will supply the pre and post-central regions of the cerebral hemispheres of this species, as well as other non-human and human primates. It is noted that in the first part of the left rostral cerebral artery, there is a direct inosculation between the recurrent branch of the rostral cerebral artery and left middle cerebral artery to supply the entorhinal region. This fact also occurs in Pongo spp. The middle cerebral artery travels along the lateral sulcus where it emits several superficial branches to irrigate the superior and inferior lateral cortical regions of the frontal, parietal and temporal lobes. It is not part of the arterial circle but is the terminal branch of the internal carotid artery. A. belzebul can be considered to depend on two sources of supply to the brain: the vertebra-basilar and carotid systems, contributing to the intervention of veterinarians during clinical and surgical procedures in other primates, as well as the preservation of wild animals.


2020 ◽  
Vol 40 (6) ◽  
pp. 484-492
Author(s):  
Laura V. Goltz ◽  
Rodrigo C. Azambuja ◽  
Rui Campos

ABSTRACT: The nutria (Myocastor coypus) is a medium-sized, semi-aquatic rodent valued by the skin and meat industry. This study aimed to describe and systematize the caudal cerebral artery on the brain surface in nutria, establishing a standard model and its main variations in this species. The thirty animals used were euthanized according to animal welfare rules. The vessels were filled with latex stained with red pigment and the samples were fixed in formaldehyde. In nutria, the brain was vascularized by the vertebral basilar system. The terminal branches of the basilar artery originated the rostral cerebellar, caudal cerebral, rostral choroidal and middle cerebral arteries, and its terminal branch, the rostral cerebral artery. The terminal branch of the basilar artery projected the caudal cerebral artery, which is usually a single medium-caliber vessel, into the transverse fissure of the brain. The caudal cerebral artery was presented as a single (66.7% of the cases to the right and 76.7% to the left) and double vessel (33.3% of the cases to the right and 23.3% to the left). It originated the rostral mesencephalic artery, the proximal component, and the caudal inter-hemispheric artery. The terminal branches of the rostral and caudal tectal mesencephalic arteries formed a typical anastomotic network. The caudal inter-hemispheric artery emitted central branches, the caudal choroidal artery, hemispherical occipital arteries, rostral tectal mesencephalic branches and distal components, and anastomosed “in osculum” with the terminal branches of the rostral inter-hemispheric artery. The caudal choroidal artery anastomosed with the rostral choroidal artery, where it branched out on the thalamic mass, vascularizing all diencephalic structures and the hippocampus. The caudal cerebral artery and its terminal branches anastomosed with the terminal branches of the rostral and middle cerebral arteries in a restricted region of the caudal pole of the cerebral hemisphere. The vascularization area of the caudal cerebral artery and its central branches in the paleopallial of the piriform lobe is extremely restricted, caudomedially.


2019 ◽  
Vol 61 (3) ◽  
pp. 386-394
Author(s):  
Dong Young Cho ◽  
Bum-soo Kim ◽  
Jinhee Jang ◽  
Hyun Seok Choi ◽  
So Lyung Jung ◽  
...  

Background The embryological relationship between cerebellar arteries originating directly from the cavernous segment of the internal carotid artery and persistent trigeminal artery is not well understood. Purpose To evaluate the incidence and pattern of cerebellar arteries originating from the internal carotid artery and persistent trigeminal artery, and to discuss their probable embryological relationship. Material and Methods We reviewed 5113 angiographic studies from 5093 patients at our institution over the last eight years, searching for patients with persistent trigeminal artery and cerebellar arteries originating from a cavernous segment of internal carotid artery (persistent trigeminal artery variant). Results Of the 5093 patients, 27 patients had persistent trigeminal artery or persistent trigeminal artery variant (0.53%). Twenty patients (6 men, 14 women; median age = 54 years) had persistent trigeminal artery (0.39%). Seven patients (2 men, 5 women, age range = 37–72 years; median age = 57 years) had a persistent trigeminal artery variant with persistent trigeminal artery terminating in a cerebellar artery without direct connection to the basilar artery (persistent trigeminal artery variant; 0.14%). The terminal branch of the persistent trigeminal artery variant was an anterior inferior carotid artery in five patients and a superior cerebellar artery in two patients. Of the seven patients having persistent trigeminal artery variant, four patients had another artery from the basilar artery to the anterior inferior carotid artery territory. In 6/20 patients with persistent trigeminal artery, there was an anterior inferior carotid artery arising from the persistent trigeminal artery. One of these patients showed another arterial branch from the basilar artery to the anterior inferior carotid artery territory. Conclusion Persistent trigeminal artery variant and cerebellar arteries originating from the persistent trigeminal artery are both believed to be a spectrum of incomplete fusion of the longitudinal neural arteries. Understanding the precise anatomy is important in diagnostic and therapeutic settings for related vascular disease.


2010 ◽  
pp. 504-517
Author(s):  
George Samandouras

Chapter 9.1 covers critical neurovascular brain anatomy, including internal carotid artery, the middle cerebral artery, the anterior cerebral artery, the vertebral arteries (VAs), the basilar artery (BA), and the venous system.


2014 ◽  
Vol 59 (No. 7) ◽  
pp. 343-348 ◽  
Author(s):  
W. Brudnicki ◽  
B. Skoczylas ◽  
R. Jablonski ◽  
W. Nowicki ◽  
A. Brudnicki ◽  
...  

The brain arteries derived from 50 adult degu individuals of both sexes were injected with synthetic latex introduced with a syringe into the left ventricle of the heart under constant pressure. After fixation in 5% formalin and brain preparation, it was found that the sources of the brain’s supply of blood are vertebral arteries and the basilar artery formed as a result of their anastomosis. The basilar artery gave rise to caudal cerebellar arteries and then divided into two branches which formed the arterial circle of the brain. The internal carotid arteries in degus, except for one case, were heavily reduced and did not play an important role in the blood supply to the brain. The arterial circle of the brain in 48% of the cases was open from the rostral side. Variation was identified in the anatomy and the pattern of the arteries of the base of the brain in the degu which involved an asymmetry of the descent of caudal cerebellar arteries (6.0%), rostral cerebellar arteries (8%) as well as middle cerebral arteries (12%). In 6% of the individuals double middle cerebral arteries were found. In one out of 50 cases there was observed a reduction in the left vertebral artery and the appearance of the internal carotid artery on the same side. In that case the left part of the arterial circle of the brain was supplied with blood by an internal carotid artery, which was present only in that animal.


1988 ◽  
Vol 8 (5) ◽  
pp. 697-712 ◽  
Author(s):  
Norihiro Suzuki ◽  
Jan Erik Hardebo ◽  
Christer Owman

In order to clarify the origins and pathways of vasoactive intestinal polypeptide (VlP)-containing nerve fibers in cerebral blood vessels of rat, denervation experiments and retrograde axonal tracing methods (true blue) were used. Numerous VIP-positive nerve cells were recognized in the sphenopalatine ganglion and in a mini-ganglion (internal carotid mini-ganglion) located on the internal carotid artery in the carotid canal, where the parasympathetic greater superficial petrosal nerve is joined by the sympathetic fibers from the internal carotid nerve, to form the Vidian nerve. VIP fiber bridges in the greater deep petrosal nerve and the internal carotid nerve reached the wall of the internal carotid artery. Two weeks after bilateral removal of the sphenopalatine ganglion or sectioning of the structures in the ethmoidal foramen, VIP fibers in the anterior part of the circle of Willis completely disappeared. Very few remained in the middle cerebral artery, the posterior cerebral artery, and rostral two-thirds of the basilar artery, whereas they remained in the caudal one-third of the basilar artery, the vertebral artery, and intracranial and carotid canal segments of the internal carotid artery. One week after application of true blue to the middle cerebral artery, dye accumulated in the ganglion cells in the sphenopalatine, otic and internal carotid mini-ganglion; some of the cells were positive for VIP. The results show that the VIP nerves in rat cerebral blood vessels originate: (a) in the sphenopalatine, and otic ganglion to innervate the circle of Willis and its branches from anterior and caudally and (b) from the internal carotid mini-ganglion to innervate the internal carotid artery at the level of the carotid canal and to some extent its intracranial extensions.


Sign in / Sign up

Export Citation Format

Share Document