scholarly journals Observing land-use/land-cover dynamics in semi-arid environment: Evidence from Damaturu Town and its surrounding lands, Yobe State, Nigeria

2020 ◽  
Vol 4 (2) ◽  
pp. 55-78
Author(s):  
Modibbo Babagana-Kyari ◽  
Babagana Boso

The fragile Sudano-Sahelian ecological zone of Nigeria has been classified as a hotspot of land cover change (LCC) that has been suffering from serious anthropogenic and biophysical stresses. Damaturu, being the fastest growing town situated in the region happened to be a victim of this negative development. The purpose of this study is to remotely observe and assess the prevailing land-use/land-cover (LULC) dynamics of Damaturu town and its delicate surrounding lands from the year 1987-2017 study periods. To achieve this, a supervised image classification technique with Maximum Likelihood Classifier (MLC) algorithm was used in ERDAS Imagine version 15 software to classify the three epochs multi-temporal and multi-spectral Landsat imageries (TM 1987, ETM+7 2000 and OLI 2017). The classified LULC maps and their resulting statistics were then used to assess the spatio-temporal aspects of the observed changes by placing the results within the wider context of previous related literature and evidences. Findings revealed that the built-up area has been expanding since 1987 with an annual change rate of 4.5% between 1987-2000, and 5.3% during 2000-2017 respectively. The growth of the town is being accompanied by massive farmlands expansion and vegetal cover (trees and shrubs) lost making the surrounding arable lands seriously disturbed. Thus, if the observed trends continue, the entire studied region will be subjected to severe environmental hazard such as desertification. Overall, the study provides valuable information required for sustainable  environmental management.

Author(s):  
S. Verma ◽  
S. Agrawal ◽  
K. Dutta

Abstract. In most of the developing nations, fast paced urbanisation is going on. This has changed the spatial patterns of Land Use Land Cover (LULC) and Land Surface Temperature (LST) over time. Continual studies are required in this context to know these phenomena more clearly. This study is carried out to analyse the spatio-temporal changes in LULC, urbanisation and LST in the metropolitan cities of India namely Delhi and Bengaluru. Landsat images of TM and OLI sensors are taken for the years 2001, 2010 and 2020. The LULC layer is obtained through supervised image classification. Concentric circles at the interval of 2 km are drawn from the centroid of the study areas which are used to compute Shannon's entropy through zonal analysis of the reclassified LULC layer. The thermal band of the Landsat is used for the computation of LST. The results of both the study areas revealed 1) decline in the open land, vegetation and water body; 2) rampant growth of built-up and urban area which become more compact over the years; and 3) spread of the higher LST zones.


2018 ◽  
Vol 13 (1) ◽  
pp. 1-18 ◽  
Author(s):  
Shekar Naik ◽  
H Gangadhara Bhat ◽  
T N Sreedhara

The present study is an attempt to examine the Land Use Land Cover changes in parts of Kundapura Taluk in Karnataka for the period 2006 and 2016 and its impact on coastal tourism. IRS satellite images of 2006 and 2016 have been used and processed using ERDAS Imagine and ArcGIS. The result indicated tremendous changes, particularly in mixed urban and agricultural land and proved that RS/GIS has advantages over conventional techniques. The result obtained, based on the multi-dated satellite data study, will assist in decision making and help to take appropriate measures to monitor and regulate coastal development in order to achieve sustainable and integrated coastal development.


2019 ◽  
Vol 51 (2) ◽  
pp. 217
Author(s):  
Adebayo Oluwasegun Hezekiah ◽  
Otun. W. O ◽  
Daniel, I. Samuel

This research paper examined the changes in land use/ land cover of Abeokuta, Nigeria between 1984 and 2015 using Multi-Temporal Landsat Remote Sensing paired with Geographic Information System (GIS) techniques. The evaluation of the trend, rate and magnitude changes was the objectives of this study.  Five Landsat satellite images of different dates,  i.e., Landsat Thematic Mapper (TM) of 1984, 2001, 2006, 2011 and 2015 with spatial resolution ranging from 15, 30 and 60metres were obtained from National Aeronautics Space Administration(NASA),United State Geological Survey Website and  GIS facility of Sioux Falls Website  and quantify the changes  over a period of thirty-one (31) years. Supervised classification methodology was applied to the acquired multi-band raster imageries using maximum livelihood technique in ERDAS Imagine 9.3. The images of the study area were classified into three (3) classes namely; vegetation, water body and built-up area and were overlay with vector maps of the study area generated in ArcGIS 10. The results show that for the period of 31years (1984-2015), vegetation which covered 76.20% of the total area has decreased to 39.29%, water body decreases from 6.63% to 1.89% while the built –up area which initially was 17.14% as at 1984 increased to 58.82%. The study, however, recommended that there is a need for a timely Land use/ Land cover mapping of the entire Abeokuta and its environs in order to reduce the effects of undiscrimate land utilization in the area. This will also facilitate necessary Land use planning and forestall the rising sprawl not only in Abeokuta but also in other urban centres.


2020 ◽  
Vol XIX (1) ◽  
pp. 72-77
Author(s):  
Sushma Shastri ◽  
Prafull Singh ◽  
Pradipika Verma ◽  
Praveen Kumar Rai ◽  
A. P. Singh

2013 ◽  
Vol 39 (4) ◽  
pp. 59-70 ◽  
Author(s):  
Fredrick Ao Otieno ◽  
Olumuyiwa I Ojo ◽  
George M. Ochieng

Abstract Land cover change (LCC) is important to assess the land use/land cover changes with respect to the development activities like irrigation. The region selected for the study is Vaal Harts Irrigation Scheme (VHS) occupying an area of approximately 36, 325 hectares of irrigated land. The study was carried out using Land sat data of 1991, 2001, 2005 covering the area to assess the changes in land use/land cover for which supervised classification technique has been applied. The Normalized Difference Vegetation Index (NDVI) index was also done to assess vegetative change conditions during the period of investigation. By using the remote sensing images and with the support of GIS the spatial pattern of land use change of Vaal Harts Irrigation Scheme for 15 years was extracted and interpreted for the changes of scheme. Results showed that the spatial difference of land use change was obvious. The analysis reveals that 37.86% of additional land area has been brought under fallow land and thus less irrigation area (18.21%). There is an urgent need for management program to control the loss of irrigation land and therefore reclaim the damaged land in order to make the scheme more viable.


2019 ◽  
Vol 3 (2) ◽  
pp. 29
Author(s):  
Zachary Gichuru Mainuri ◽  
John M. Mironga ◽  
Samuel M. Mwonga

Drivers of land use change were captured by the use of DPSIR model where Drivers (D) represented human needs, Pressures (P), human activities, State (S), the ecosystem, Impact (I) services from the ecosystem and Response (R), the decisions taken by land users. Land sat MSS and Land sat ETM+ (path 185, row 31) were used in this study. The Land sat ETM+ image (June 1987, May, 2000 and July, 2014) was downloaded from USGS Earth Resources Observation Systems data website. Remote sensing image processing was performed by using ERDAS Imagine 9.1. Two land use/land cover (LULC) classes were established as forest and shrub land. Severe land cover changes was found to have occurred from 1987-2000, where shrub land reduced by -19%, and forestry reduced by -72%. In 2000 – 2014 shrub land reduced by-45%, and forestry reduced by -64%. Forestry and shrub land were found to be consistently reducing.


Sign in / Sign up

Export Citation Format

Share Document