scholarly journals Deep Reinforcement Learning for Active Flow Control around a Circular Cylinder Using Unsteady-mode Plasma Actuators

Author(s):  
Mohamed Elhawary

Deep reinforcement learning (DRL) algorithms are rapidly making inroads into fluid mechanics, following the remarkable achievements of these techniques in a wide range of science and engineering applications. In this paper, a deep reinforcement learning (DRL) agent has been employed to train an artificial neural network (ANN) using computational fluid dynamics (CFD) data to perform active flow control (AFC) around a 2-D circular cylinder. Flow control strategies are investigated at a diameter-based Reynolds number Re_D = 100 using advantage actor-critic (A2C) algorithm by means of two symmetric plasma actuators located on the surface of the cylinder near the separation point. The DRL agent interacts with the computational fluid dynamics (CFD) environment through manipulating the non-dimensional burst frequency (f+) of the two plasma actuators, and the time-averaged surface pressure is used as a feedback observation to the deep neural networks (DNNs). The results show that a regular actuation using a constant non-dimensional burst frequency gives a maximum drag reduction of 21.8 %, while the DRL agent is able to learn a control strategy that achieves a drag reduction of 22.6%. By analyzing the flow-field, it is shown that the drag reduction is accompanied with a strong flow reattachment and a significant reduction in the mean velocity magnitude and velocity fluctuations at the wake region. These outcomes prove the great capabilities of the deep reinforcement learning (DRL) paradigm in performing active flow control (AFC), and pave the way toward developing robust flow control strategies for real-life applications.

2020 ◽  
Vol 117 (42) ◽  
pp. 26091-26098
Author(s):  
Dixia Fan ◽  
Liu Yang ◽  
Zhicheng Wang ◽  
Michael S. Triantafyllou ◽  
George Em Karniadakis

We have demonstrated the effectiveness of reinforcement learning (RL) in bluff body flow control problems both in experiments and simulations by automatically discovering active control strategies for drag reduction in turbulent flow. Specifically, we aimed to maximize the power gain efficiency by properly selecting the rotational speed of two small cylinders, located parallel to and downstream of the main cylinder. By properly defining rewards and designing noise reduction techniques, and after an automatic sequence of tens of towing experiments, the RL agent was shown to discover a control strategy that is comparable to the optimal strategy found through lengthy systematically planned control experiments. Subsequently, these results were verified by simulations that enabled us to gain insight into the physical mechanisms of the drag reduction process. While RL has been used effectively previously in idealized computer flow simulation studies, this study demonstrates its effectiveness in experimental fluid mechanics and verifies it by simulations, potentially paving the way for efficient exploration of additional active flow control strategies in other complex fluid mechanics applications.


2021 ◽  
Vol 33 (6) ◽  
pp. 063607
Author(s):  
Changdong Zheng ◽  
Tingwei Ji ◽  
Fangfang Xie ◽  
Xinshuai Zhang ◽  
Hongyu Zheng ◽  
...  

2021 ◽  
Author(s):  
F. F. Rodrigues ◽  
J. Nunes-Pereira ◽  
M. Abdollahzadeh ◽  
J. Pascoa ◽  
S. Lanceros-Mendez

Abstract Dielectric Barrier Discharge (DBD) plasma actuators are simple devices with great potential for active flow control applications. Further, it has been recently proven their ability for applications in the area of heat transfer, such as film cooling of turbine blades or ice removal. The dielectric material used in the fabrication of these devices is essential in determining the device performance. However, the variety of dielectric materials studied in the literature is very limited and the majority of the authors only use Kapton, Teflon, Macor ceramic or poly(methyl methacrylate) (PMMA). Furthermore, several authors reported difficulties in the durability of the dielectric layer when the actuators operate at high voltage and frequency. Also, it has been reported that, after long operation time, the dielectric layer suffers degradation due to its exposure to plasma discharge, degradation that may lead to the failure of the device. Considering the need of durable and robust actuators, as well as the need of higher flow control efficiencies, it is highly important to develop new dielectric materials which may be used for plasma actuator fabrication. In this context, the present study reports on the experimental testing of dielectric materials which can be used for DBD plasma actuators fabrication. Plasma actuators fabricated of poly(vinylidene fluoride) (PVDF) and polystyrene (PS) have been fabricated and evaluated. Although these dielectric materials are not commonly used as dielectric layer of plasma actuators, their interesting electrical and dielectric properties and the possibility of being used as sensors, indicate their suitability as potential alternatives to the standard used materials. The plasma actuators produced with these nonstandard dielectric materials were analyzed in terms of electrical characteristics, generated flow velocity and mechanical efficiency, and the obtained results were compared with a standard actuator made of Kapton. An innovative calorimetric method was implemented in order to estimate the thermal power transferred by these devices to an adjacent flow. These results allowed to discuss the ability of these new dielectric materials not only for flow control applications but also for heat transfer applications.


2019 ◽  
Vol 865 ◽  
pp. 281-302 ◽  
Author(s):  
Jean Rabault ◽  
Miroslav Kuchta ◽  
Atle Jensen ◽  
Ulysse Réglade ◽  
Nicolas Cerardi

We present the first application of an artificial neural network trained through a deep reinforcement learning agent to perform active flow control. It is shown that, in a two-dimensional simulation of the Kármán vortex street at moderate Reynolds number ($Re=100$), our artificial neural network is able to learn an active control strategy from experimenting with the mass flow rates of two jets on the sides of a cylinder. By interacting with the unsteady wake, the artificial neural network successfully stabilizes the vortex alley and reduces drag by approximately 8 %. This is performed while using small mass flow rates for the actuation, of the order of 0.5 % of the mass flow rate intersecting the cylinder cross-section once a new pseudo-periodic shedding regime is found. This opens the way to a new class of methods for performing active flow control.


Author(s):  
R Bardera-Mora ◽  
A Conesa ◽  
I Lozano

This experimental investigation presents a new active flow control technique based on plasma actuators applied to a backward facing step whose structure is similar to that formed by the hangar and flight deck of small naval vessels. These experiments were carried out by testing a simple frigate shape model settled at 0° wind over deck in a low-speed wind tunnel. Two different configurations of dielectric barrier discharge plasma actuator have been used to modify the flow downstream of the step. Results obtained investigating the flow by particle image velocimetry prove the capacity of plasma actuators by reducing instabilities and turbulence over the simple frigate shape model.


Sign in / Sign up

Export Citation Format

Share Document