scholarly journals Structural and functional leaf diversity lead to variability in photosynthetic capacity across a range of Juglans regia genotypes

Author(s):  
Mina Momayyezi ◽  
Devin Rippner ◽  
Fiona Duong ◽  
Pranav Raja ◽  
Pat Brown ◽  
...  

Similar to other cropping systems, few walnut cultivars are used as scion in commercial production. Germplasm collections can be used to diversify cultivar options and hold potential for improving crop productivity, disease resistance and stress tolerance. In this study we explored the anatomical and biochemical bases of photosynthetic capacity in 11 J. regia accessions in the USDA-ARS National Clonal Germplasm Repository. Net assimilation rate (A) differed significantly among accessions and was greater in those from lower latitudes coincident with increases in stomatal and mesophyll conductance, leaf thickness, mesophyll porosity and gas-phase diffusion, and leaf nitrogen, and lower leaf mass and stomatal density. High CO-saturated assimilation rates led to increases in A under limiting conditions. Greater A was found in lower latitude accessions native to climates with more frost-free days, greater precipitation seasonality, and lower temperature seasonality. As expected, water stress consistently impaired photosynthesis with the highest % reductions in three lower latitude accessions (A3, A5, and A9), which had the highest A under well-watered conditions. However, A for A3 and A5 remained amongst the highest under dehydration. J. regia accessions, which have leaf structural traits and biochemistry that enhance photosynthesis, could be used as commercial scions or breeding parents to enhance productivity.

2021 ◽  
Vol 41 (1) ◽  
Author(s):  
Federica Zanetti ◽  
Barbara Alberghini ◽  
Ana Marjanović Jeromela ◽  
Nada Grahovac ◽  
Dragana Rajković ◽  
...  

AbstractPromoting crop diversification in European agriculture is a key pillar of the agroecological transition. Diversifying crops generally enhances crop productivity, quality, soil health and fertility, and resilience to pests and diseases and reduces environmental stresses. Moreover, crop diversification provides an alternative means of enhancing farmers’ income. Camelina (Camelina sativa (L.) Crantz) reemerged in the background of European agriculture approximately three decades ago, when the first studies on this ancient native oilseed species were published. Since then, a considerable number of studies on this species has been carried out in Europe. The main interest in camelina is related to its (1) broad environmental adaptability, (2) low-input requirements, (3) resistance to multiple pests and diseases, and (4) multiple uses in food, feed, and biobased applications. The present article is a comprehensive and critical review of research carried out in Europe (compared with the rest of the world) on camelina in the last three decades, including genetics and breeding, agronomy and cropping systems, and end-uses, with the aim of making camelina an attractive new candidate crop for European farming systems. Furthermore, a critical evaluation of what is still missing to scale camelina up from a promising oilseed to a commonly cultivated crop in Europe is also provided (1) to motivate scientists to promote their studies and (2) to show farmers and end-users the real potential of this interesting species.


2020 ◽  
Vol 2 ◽  
Author(s):  
Nathalie Colbach ◽  
Sandrine Petit ◽  
Bruno Chauvel ◽  
Violaine Deytieux ◽  
Martin Lechenet ◽  
...  

The growing recognition of the environmental and health issues associated to pesticide use requires to investigate how to manage weeds with less or no herbicides in arable farming while maintaining crop productivity. The questions of weed harmfulness, herbicide efficacy, the effects of herbicide use on crop yields, and the effect of reducing herbicides on crop production have been addressed over the years but results and interpretations often appear contradictory. In this paper, we critically analyze studies that have focused on the herbicide use, weeds and crop yield nexus. We identified many inconsistencies in the published results and demonstrate that these often stem from differences in the methodologies used and in the choice of the conceptual model that links the three items. Our main findings are: (1) although our review confirms that herbicide reduction increases weed infestation if not compensated by other cultural techniques, there are many shortcomings in the different methods used to assess the impact of weeds on crop production; (2) Reducing herbicide use rarely results in increased crop yield loss due to weeds if farmers compensate low herbicide use by other efficient cultural practices; (3) There is a need for comprehensive studies describing the effect of cropping systems on crop production that explicitly include weeds and disentangle the impact of herbicides from the effect of other practices on weeds and on crop production. We propose a framework that presents all the links and feed-backs that must be considered when analyzing the herbicide-weed-crop yield nexus. We then provide a number of methodological recommendations for future studies. We conclude that, since weeds are causing yield loss, reduced herbicide use and maintained crop productivity necessarily requires a redesign of cropping systems. These new systems should include both agronomic and biodiversity-based levers acting in concert to deliver sustainable weed management.


2019 ◽  
Vol 17 (1) ◽  
pp. 49-63
Author(s):  
K Pariyar ◽  
A Chaudhary ◽  
P Sapkota ◽  
S Sharma ◽  
CB Rana ◽  
...  

The effects of two tillage methods (zero tillage and conventional tillage), two residue managements (residue kept and residue removed) and two levels of cropping system (maize + soybean and sole maize) were studied over 3 years (2015-2017) at Dailekh district of Nepal. Arun-2 and Puja were the varieties of maize and soybean used respectively, followed by winter wheat. The results revealed that the maize + soybean system had significantly higher plant population and ear population (34.83 thousands ha-1 and 34.35 thousands ha-1, respectively), grains per row (37.1), ear length (16.6 cm) and 20.5% higher grain yield as compared to sole maize. The highest maize equivalent yield (7.92 t ha-1) was recorded in maize + soybean as compared to the lower grain yield equivalent (7.06 t ha-1) in sole maize. Zero tillage accounted relatively higher benefits (high net income and B:C ratio) as compared to conventional tillage. The residue kept plot resulted significantly higher B:C ratio (2.41) than the residue removed (2.11) and the maize + soybean recorded 82.5% greater B:C ratio compared to sole maize. Net annual income was significantly higher in zero tillage, residue kept and maize + soybean system (NRs. 223072.00, 222958.00 and 269016.00 ha-1 respectively). Such combinations are recommended for Dailekh district of Nepal to have profitable crop productivity. SAARC J. Agri., 17(1): 49-63 (2019)


2005 ◽  
Vol 2 (2) ◽  
pp. 333-397 ◽  
Author(s):  
E. Simon ◽  
F. X. Meixner ◽  
L. Ganzeveld ◽  
J. Kesselmeier

Abstract. Detailed one-dimensional multilayer biosphere-atmosphere models, also referred to as CANVEG models, are used for more than a decade to describe coupled water-carbon exchange between the terrestrial vegetation and the lower atmosphere. Within the present study, a modified CANVEG scheme is described. A generic parameterization and characterization of biophysical properties of Amazon rain forest canopies is inferred using available field measurements of canopy structure, in-canopy profiles of horizontal wind speed and radiation, canopy albedo, soil heat flux and soil respiration, photosynthetic capacity and leaf nitrogen as well as leaf level enclosure measurements made on sunlit and shaded branches of several Amazonian tree species during the wet and dry season. The sensitivity of calculated canopy energy and CO2 fluxes to the uncertainty of individual parameter values is assessed. In the companion paper, the predicted seasonal exchange of energy, CO2, ozone and isoprene is compared to observations. A bi-modal distribution of leaf area density with a total leaf area index of 6 is inferred from several observations in Amazonia. Predicted light attenuation within the canopy agrees reasonably well with observations made at different field sites. A comparison of predicted and observed canopy albedo shows a high model sensitivity to the leaf optical parameters for near-infrared short-wave radiation (NIR). The predictions agree much better with observations when the leaf reflectance and transmission coefficients for NIR are reduced by 25–40%. Available vertical distributions of photosynthetic capacity and leaf nitrogen concentration suggest a low but significant light acclimation of the rain forest canopy that scales nearly linearly with accumulated leaf area. Evaluation of the biochemical leaf model, using the enclosure measurements, showed that recommended parameter values describing the photosynthetic light response, have to be optimized. Otherwise, predicted net assimilation is overestimated by 30–50%. Two stomatal models have been tested, which apply a well established semi-empirical relationship between stomatal conductance and net assimilation. Both models differ in the way they describe the influence of humidity on stomatal response. However, they show a very similar performance within the range of observed environmental conditions. The agreement between predicted and observed stomatal conductance rates is reasonable. In general, the leaf level data suggests seasonal physiological changes, which can be reproduced reasonably well by assuming increased stomatal conductance rates during the wet season, and decreased assimilation rates during the dry season. The sensitivity of the predicted canopy fluxes of energy and CO2 to the parameterization of canopy structure, the leaf optical parameters, and the scaling of photosynthetic parameters is relatively low (1–12%), with respect to parameter uncertainty. In contrast, modifying leaf model parameters within their uncertainty range results in much larger changes of the predicted canopy net fluxes (5–35%).


2006 ◽  
Vol 18 (2) ◽  
pp. 281-290 ◽  
Author(s):  
Antonio José Dias Vieira ◽  
Dario Alves de Oliveira ◽  
Taís Cristina Bastos Soares ◽  
Ivan Schuster ◽  
Newton Deniz Piovesan ◽  
...  

This work aimed to identify the quantitative trait loci (QTL) associated with photosynthesis and growth and productivity traits of soybean and to study possible associations between these traits by the analysis of coincidence of QTL in linkage groups (LGs). Thus, populations of recombinant inbred lines (RILs) of the F7 and F8 generations derived from the cross between the varieties BARC-8 and Garimpo were used. The traits evaluated were net assimilation rate of CO2 under saturating light (Asat), potential photosynthesis rate (Pmax), leaf area (A), specific leaf area (SLA), specific leaf nitrogen (N); root (W R), nodule (W N), stem (W ST), leaf (W L), pod (W P) and plant dry mass (W T); nodule (nN), seed (n s), and pod number (nP); seed fresh mass per plant (W S), one-hundred seed fresh mass (W HS) and seed protein percentage (P%). It was possible to identify the following QTL associated with the following soybean traits: SLA, Asat, N, W R, W ST, W L, W T, W P, W HS, n s and nP, indicating that the RIL population has a great potential for mapping loci associated with quantitative traits of the soybean crop. The correlations between the soybean traits were partially confirmed by coincidence of QTL.


2005 ◽  
Vol 2 (3) ◽  
pp. 231-253 ◽  
Author(s):  
E. Simon ◽  
F. X. Meixner ◽  
L. Ganzeveld ◽  
J. Kesselmeier

Abstract. Detailed one-dimensional multilayer biosphere-atmosphere models, also referred to as CANVEG models, are used for more than a decade to describe coupled water-carbon exchange between the terrestrial vegetation and the lower atmosphere. Within the present study, a modified CANVEG scheme is described. A generic parameterization and characterization of biophysical properties of Amazon rain forest canopies is inferred using available field measurements of canopy structure, in-canopy profiles of horizontal wind speed and radiation, canopy albedo, soil heat flux and soil respiration, photosynthetic capacity and leaf nitrogen as well as leaf level enclosure measurements made on sunlit and shaded branches of several Amazonian tree species during the wet and dry season. The sensitivity of calculated canopy energy and CO2 fluxes to the uncertainty of individual parameter values is assessed. In the companion paper, the predicted seasonal exchange of energy, CO2, ozone and isoprene is compared to observations. A bi-modal distribution of leaf area density with a total leaf area index of 6 is inferred from several observations in Amazonia. Predicted light attenuation within the canopy agrees reasonably well with observations made at different field sites. A comparison of predicted and observed canopy albedo shows a high model sensitivity to the leaf optical parameters for near-infrared short-wave radiation (NIR). The predictions agree much better with observations when the leaf reflectance and transmission coefficients for NIR are reduced by 25–40%. Available vertical distributions of photosynthetic capacity and leaf nitrogen concentration suggest a low but significant light acclimation of the rain forest canopy that scales nearly linearly with accumulated leaf area. Evaluation of the biochemical leaf model, using the enclosure measurements, showed that recommended parameter values describing the photosynthetic light response, have to be optimized. Otherwise, predicted net assimilation is overestimated by 30–50%. Two stomatal models have been tested, which apply a well established semi-empirical relationship between stomatal conductance and net assimilation. Both models differ in the way they describe the influence of humidity on stomatal response. However, they show a very similar performance within the range of observed environmental conditions. The agreement between predicted and observed stomatal conductance rates is reasonable. In general, the leaf level data suggests seasonal physiological changes, which can be reproduced reasonably well by assuming increased stomatal conductance rates during the wet season, and decreased assimilation rates during the dry season. The sensitivity of the predicted canopy fluxes of energy and CO2 to the parameterization of canopy structure, the leaf optical parameters, and the scaling of photosynthetic parameters is relatively low (1–12%), with respect to parameter uncertainty. In contrast, modifying leaf model parameters within their uncertainty range results in much larger changes of the predicted canopy net fluxes (5–35%).


Sign in / Sign up

Export Citation Format

Share Document