hyperspectral reflectance
Recently Published Documents


TOTAL DOCUMENTS

389
(FIVE YEARS 109)

H-INDEX

39
(FIVE YEARS 6)

2022 ◽  
Vol 14 (2) ◽  
pp. 347
Author(s):  
Xiaofang Jiang ◽  
Hanchen Duan ◽  
Jie Liao ◽  
Pinglin Guo ◽  
Cuihua Huang ◽  
...  

Hyperspectral data has attracted considerable attention in recent years due to its high accuracy in monitoring soil salinization. At present, most existing research focuses on the saline soil in a single area without comparative analysis between regions. The regional differences in the hyperspectral characteristics of saline soil are still unclear. Thus, we chose Golmud in the cold–dry Qaidam Basin (QB–G) and Gaotai–Minghua in the relatively warm–dry Hexi Corridor (HC–GM) as the study areas, and used the deep extreme learning machine (DELM) and sine cosine algorithm–Elman (SCA–Elman) to predict soil salinity, and then selected the most suitable algorithm in these two regions. A total of 79 (QB–G) and 86 (HC–GM) soil samples were collected and tested to obtain their electrical conductivity (EC) and corresponding hyperspectral reflectance (R). We utilized the land surface parameters that affect the soil based on Landsat 8 and digital elevation model (DEM) data, selected the variables using the light gradient boosting machine (LightGBM), and built SCA–Elman and DELM from the hyperspectral reflectance data combined with land surface parameters. The results revealed the following: (1) The soil hyperspectral reflectance in QB–G was higher than that in HC–GM. The soils of QB–G are mainly the chloride type and those of HC–GM mainly belong to the sulfate type, having lower reflectance. (2) The accuracies of some of the SCA–Elman and DELM models in QB–G (the highest MAEv, RMSEv, and were 0.09, 0.12 and 0.75, respectively) were higher than those in HC–GM (the highest MAEv, RMSEv, and were 0.10, 0.14 and 0.73, respectively), which has flatter terrain and less obvious surface changes. The surface parameters in QB–G had higher correlation coefficients with EC due to the regular altitude change and cold–dry climate. (3) Most of the SCA–Elman results (the mean in HC-GM and QB-G were 0.62 and 0.60, respectively) in all areas performed better than the DELM results (the mean in HC–GM and QB–G were 0.51 and 0.49, respectively). Therefore, SCA–Elman was more suitable for the soil salinity prediction in HC–GM and QB–G. This can provide a reference for soil salinization monitoring and model selection in the future.


2022 ◽  
Vol 14 (2) ◽  
pp. 285
Author(s):  
Tao Zhang ◽  
Xiaodong Jiang ◽  
Linlin Jiang ◽  
Xuran Li ◽  
Shenbin Yang ◽  
...  

To analyze the hyperspectral reflectance characteristics of rice canopies under changes in diffuse radiation fraction, experiments using different cover materials were performed in Nanjing, China, during 2016 and 2017. Each year, two treatments with different reduction ratios of diffuse radiation fraction but with similar shading rates were set in the field experiment: In T1, total solar radiation shading rate was 14.10%, and diffuse radiation fraction was 31.09%; in T2, total solar radiation shading rate was 14.42%, and diffuse radiation fraction was 39.98%, respectively. A non-shading treatment was included as a control (CK). Canopy hyperspectral reflectance, soil and plant analyzer development (SPAD), and leaf area index (LAI) were measured under shading treatments on different days after heading. The red-edge parameters (position, λ0; maximum amplitude, Dλ; area, α0; width, σ) were calculated, as well as the area, depth, and width of three absorption bands. The location of the first absorption band appeared in the range of 553–788 nm, and the second and third absorption bands appeared in the range of 874–1257 nm. The results show that the shading treatment had a significant effect on the rice canopy’s hyperspectral reflectance. Compared with CK, the canopy reflectance of T1 (the diffuse radiation fraction was 31.09%) and T2 (the diffuse radiation fraction was 39.98%) decreased in the visible light range (350–760 nm) and increased in the near-infrared range (800–1350 nm), while the red-edge parameters (λ0, Dλ, α0), SPAD, and LAI increased. On the other hand, under shading treatment, the increase in diffuse radiation fraction also had a significant impact on the hyperspectral spectra of the rice canopy, especially at 14 days after heading. Compared with T1, the green peak (550 nm) of T2 reduced by 16.12%, and the average reflectance at 800–900 nm increased by 10%. Based on correlation analysis, it was found that these hyperspectral reflectance characteristics were mainly due to the increase in SPAD (2.31%) and LAI (7.62%), which also led to the increase in Dλ (8.70%) and α0 (13.89%). Then, the second and third absorption features of T2 were significantly different from that of T1, which suggests that the change in diffuse radiation fraction could affect the process of water vapor absorption by rice.


Author(s):  
Alexei Solovchenko ◽  
Boris Shurygin ◽  
Andrey Kuzin ◽  
Vitaly Velichko ◽  
Olga Solovchenko ◽  
...  

Hyperspectral reflectance imaging is an emerging method for rapid non-invasive quantitative screening of plant traits. This method is essential for high-throughput phenotyping and hence for accelerated breeding of crop plants as well as for precision agriculture practices. However, extraction of sensible information from reflectance images is hindered by the complexity of plant optical properties, especially when they are measured in the field. We propose using reflectance indices (Plant Senescence Reflectance Index, PSRI; Anthocyanin Reflectance Index, ARI; and spectral deconvolution) previously developed for remote sensing of vegetation and point-based reflectometers to infer the spatially resolved information on plant development and biochemical composition using ripening apple fruit as the model. Specifically, the proposed approach enables capturing data on distribution of chlorophylls and primary carotenoids as well as secondary carotenoids (both linked with fruit ripening and leaf senescence during plant development) as well as the information on spatial distribution of anthocyanins (known as stress pigments) over the plant surface. We argue that the proposed approach would enrich the phenotype assessments made on the base of reflectance image analysis with valuable information on plant physiological condition, stress acclimation state, and the progression of the plant development.


2021 ◽  
Vol 267 ◽  
pp. 112719
Author(s):  
Christian J. Köppl ◽  
Radu Malureanu ◽  
Carsten Dam-Hansen ◽  
Sheng Wang ◽  
Hongxiao Jin ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Mohsen Yoosefzadeh-Najafabadi ◽  
Sepideh Torabi ◽  
Dan Tulpan ◽  
Istvan Rajcan ◽  
Milad Eskandari

In conjunction with big data analysis methods, plant omics technologies have provided scientists with cost-effective and promising tools for discovering genetic architectures of complex agronomic traits using large breeding populations. In recent years, there has been significant progress in plant phenomics and genomics approaches for generating reliable large datasets. However, selecting an appropriate data integration and analysis method to improve the efficiency of phenome-phenome and phenome-genome association studies is still a bottleneck. This study proposes a hyperspectral wide association study (HypWAS) approach as a phenome-phenome association analysis through a hierarchical data integration strategy to estimate the prediction power of hyperspectral reflectance bands in predicting soybean seed yield. Using HypWAS, five important hyperspectral reflectance bands in visible, red-edge, and near-infrared regions were identified significantly associated with seed yield. The phenome-genome association analysis of each tested hyperspectral reflectance band was performed using two conventional genome-wide association studies (GWAS) methods and a machine learning mediated GWAS based on the support vector regression (SVR) method. Using SVR-mediated GWAS, more relevant QTL with the physiological background of the tested hyperspectral reflectance bands were detected, supported by the functional annotation of candidate gene analyses. The results of this study have indicated the advantages of using hierarchical data integration strategy and advanced mathematical methods coupled with phenome-phenome and phenome-genome association analyses for a better understanding of the biology and genetic backgrounds of hyperspectral reflectance bands affecting soybean yield formation. The identified yield-related hyperspectral reflectance bands using HypWAS can be used as indirect selection criteria for selecting superior genotypes with improved yield genetic gains in large breeding populations.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2512
Author(s):  
Salah El-Hendawy ◽  
Nasser Al-Suhaibani ◽  
Muhammad Mubushar ◽  
Muhammad Usman Tahir ◽  
Yahya Refay ◽  
...  

The incorporation of stress tolerance indices (STIs) with the early estimation of grain yield (GY) in an expeditious and nondestructive manner can enable breeders for ensuring the success of genotype development for a wide range of environmental conditions. In this study, the relative performance of GY for sixty-four spring wheat germplasm under the control and 15.0 dS m−1 NaCl were compared through different STIs, and the ability of a hyperspectral reflectance tool for the early estimation of GY and STIs was assessed using twenty spectral reflectance indices (SRIs; 10 vegetation SRIs and 10 water SRIs). The results showed that salinity treatments, genotypes, and their interactions had significant effects on the GY and nearly all SRIs. Significant genotypic variations were also observed for all STIs. Based on the GY under the control (GYc) and salinity (GYs) conditions and all STIs, the tested genotypes were classified into three salinity tolerance groups (salt-tolerant, salt-sensitive, and moderately salt-tolerant groups). Most vegetation and water SRIs showed strong relationships with the GYc, stress tolerance index (STI), and geometric mean productivity (GMP); moderate relationships with GYs and sometimes with the tolerance index (TOL); and weak relationships with the yield stability index (YSI) and stress susceptibility index (SSI). Obvious differences in the spectral reflectance curves were found among the three salinity tolerance groups under the control and salinity conditions. Stepwise multiple linear regressions identified three SRIs from each vegetation and water SRI as the most influential indices that contributed the most variation in the GY. These SRIs were much more effective in estimating the GYc (R2 = 0.64 − 0.79) than GYs (R2 = 0.38 − 0.47). They also provided a much accurate estimation of the GYc and GYs for the moderately salt-tolerant genotype group; YSI, SSI, and TOL for the salt-sensitive genotypes group; and STI and GMP for all the three salinity tolerance groups. Overall, the results of this study highlight the potential of using a hyperspectral reflectance tool in breeding programs for phenotyping a sufficient number of genotypes under a wide range of environmental conditions in a cost-effective, noninvasive, and expeditious manner. This will aid in accelerating the development of genotypes for salinity conditions in breeding programs.


2021 ◽  
Vol 845 (1) ◽  
pp. 012046
Author(s):  
A I Kuzin ◽  
A E Solovchenko ◽  
S A Karpukhina ◽  
N Ya Kashirskaya ◽  
A M Kochkina ◽  
...  

Abstract Well-balanced mineral nutrition of apple trees is critical for fruit quality and storability. The seasonal changes of phosphorus and potassium leaf content were studied in the pot sand culture during the seasons of 2019 and 2020. The treatments comprised the application of the nutrient solution with different concentrations (0.00; 0.68; 1.36; 1.70; 2.04; 2.72; 3.40 g l-1). Leaves were analyzed on potassium and phosphorus content. The increase in potassium supply led to a striking increase in the content of apple leaf phosphorus above the optimal level. An approach to non-invasive detection of the impact of the nutrient imbalance based on hyperspectral reflectance imaging has been proposed.


Sign in / Sign up

Export Citation Format

Share Document