scholarly journals Nonparametric inference of stochastic differential equations based on the relative entropy rate

Author(s):  
Min Dai ◽  
Jinqiao Duan ◽  
jianyu Hu ◽  
Xiangjun Wang

The information detection of complex systems from data is currently undergoing a revolution,driven by the emergence of big data and machine learning methodology. Discovering governingequations and quantifying dynamical properties of complex systems are among central challenges. Inthis work, we devise a nonparametric approach to learn the relative entropy rate from observationsof stochastic differential equations with different drift functions. The estimator corresponding tothe relative entropy rate then is presented via the Gaussian process kernel theory. Meanwhile, thisapproach enables to extract the governing equations. We illustrate our approach in several examples.Numerical experiments show the proposed approach performs well for rational drift functions, notonly polynomial drift functions.

2020 ◽  
Author(s):  
Forough Hassanibesheli ◽  
Niklas Boers ◽  
Jürgen Kurths

<p>A complex system is a system composed of highly interconnected components in which the collective property of an underlying system cannot be described by dynamical behavior of the individual parts. Typically, complex systems are governed by nonlinear interactions and intricate fluctuations, thus to retrieve dynamics of a system, it is required to characterize and asses interactions between deterministic tendencies and random fluctuations. </p><p>For systems with large numbers of degrees of freedom, interacting across various time scales, deriving time-evolution equations from data is computationally expensive. A possible way to circumvent this problem is to isolate a small number of relatively slow degrees of freedom that may suffice to characterize the underlying dynamics and solve the governing motion equation for the reduced-dimension system in the framework of stochastic differential equations(SDEs).  For some specific example settings, we have studied the performance of three stochastic dimension-reduction methods (Langevin equation(LE), generalized Langevin Equation(GLE) and Empirical Model Reduction(EMR)) to model various synthetic and real-world time series. In this study corresponding numerical simulations of all models have been examined by probability distribution function(PDF) and Autocorrelation function(ACF) of the average simulated time series as statistical benchmarks for assessing the differnt models' performance. </p><p>First we reconstruct the Niño-3 monthly sea surface temperature (SST) indices averages across (5°N–5°S, 150°–90°W) from 1891 to 2015 using the three aforementioned stochastic models. We demonstrate that all these considered models can reproduce the same skewed and heavy-tailed distributions of Niño-3 SST, comparing ACFs, GLE exhibits a tendency towards achieving a higher accuracy than LE and EMR. A particular challenge for deriving the underlying dynamics of complex systems from data is given by situations of abrupt transitions between alternative states. We show how the Kramers-Moyal approach to derive drift and diffusion terms for LEs can help in such situations. A prominent example of such 'Tipping Events' is given by the Dansgaard-Oeschger events during previous glacial intervals. We attempt to obtain the statistical properties of high-resolution, 20yr average, δ<sup>18</sup>O and Ca<sup>+</sup><sup>2</sup> collected from the same ice core from the NGRIP on the GICC05 time scale. Through extensive analyses of various systems, our results signify that stochastic differential equation models considering memory effects are comparatively better approaches for understanding  complex systems.</p><p> </p>


2012 ◽  
Author(s):  
Bo Jiang ◽  
Roger Brockett ◽  
Weibo Gong ◽  
Don Towsley

2020 ◽  
Vol 53 (2) ◽  
pp. 2220-2224
Author(s):  
William M. McEneaney ◽  
Hidehiro Kaise ◽  
Peter M. Dower ◽  
Ruobing Zhao

Sign in / Sign up

Export Citation Format

Share Document