Reconstruction of Complex Dynamical Systems Using Stochastic Differential Equations

Author(s):  
Forough Hassanibesheli ◽  
Niklas Boers ◽  
Jürgen Kurths

<p>A complex system is a system composed of highly interconnected components in which the collective property of an underlying system cannot be described by dynamical behavior of the individual parts. Typically, complex systems are governed by nonlinear interactions and intricate fluctuations, thus to retrieve dynamics of a system, it is required to characterize and asses interactions between deterministic tendencies and random fluctuations. </p><p>For systems with large numbers of degrees of freedom, interacting across various time scales, deriving time-evolution equations from data is computationally expensive. A possible way to circumvent this problem is to isolate a small number of relatively slow degrees of freedom that may suffice to characterize the underlying dynamics and solve the governing motion equation for the reduced-dimension system in the framework of stochastic differential equations(SDEs).  For some specific example settings, we have studied the performance of three stochastic dimension-reduction methods (Langevin equation(LE), generalized Langevin Equation(GLE) and Empirical Model Reduction(EMR)) to model various synthetic and real-world time series. In this study corresponding numerical simulations of all models have been examined by probability distribution function(PDF) and Autocorrelation function(ACF) of the average simulated time series as statistical benchmarks for assessing the differnt models' performance. </p><p>First we reconstruct the Niño-3 monthly sea surface temperature (SST) indices averages across (5°N–5°S, 150°–90°W) from 1891 to 2015 using the three aforementioned stochastic models. We demonstrate that all these considered models can reproduce the same skewed and heavy-tailed distributions of Niño-3 SST, comparing ACFs, GLE exhibits a tendency towards achieving a higher accuracy than LE and EMR. A particular challenge for deriving the underlying dynamics of complex systems from data is given by situations of abrupt transitions between alternative states. We show how the Kramers-Moyal approach to derive drift and diffusion terms for LEs can help in such situations. A prominent example of such 'Tipping Events' is given by the Dansgaard-Oeschger events during previous glacial intervals. We attempt to obtain the statistical properties of high-resolution, 20yr average, δ<sup>18</sup>O and Ca<sup>+</sup><sup>2</sup> collected from the same ice core from the NGRIP on the GICC05 time scale. Through extensive analyses of various systems, our results signify that stochastic differential equation models considering memory effects are comparatively better approaches for understanding  complex systems.</p><p> </p>

2019 ◽  
Vol 14 (04) ◽  
pp. 171-196
Author(s):  
Shin-Ho Chung ◽  
Michael Roper

An introductory, pedagogical review of the generalized Langevin equation (GLE) within the classical regime is presented. It is intended to be accessible to biophysicists with an interest in molecular dynamics (MD). Section 1 presents why the equation may be of interest within biophysical modeling. A detailed elementary first principles derivation of the (multidimensional) Kac–Zwanzig model is presented. The literature is reviewed with a focus on biophysical applications and representation by Markovian stochastic differential equations. The relationship with the Mori–Zwanzig formalism is discussed. The framework of model reduction and approximation is emphasized. Some open problems are identified.


2008 ◽  
Vol 18 (09) ◽  
pp. 2709-2716 ◽  
Author(s):  
PAOLO GRIGOLINI

We illustrate two distinct approaches to the Mittag–Leffler relaxation, as a mathematical expression suitable for the interpretation of real data produced by complex systems, and especially those of physiological interest. The first approach is based on interpreting the fluctuation–dissipation process under study as obtained via Subordination to the Ordinary Fluctuation–Dissipation (SOFD) process. The second approach rests on the Generalized Langevin Equation (GLE). We prove that in the real cases of truncated time series the two theories generate a survival probability in the form of a stretched exponential, and that this property makes it hard to assess if a given time series obeys the GLE or the SOFD prescription. Some conjectures are made on the possibility of distinguishing the GLE from the SOFD predictions through the analysis of a single time series.


Author(s):  
Adrien Laurent ◽  
Gilles Vilmart

AbstractWe derive a new methodology for the construction of high-order integrators for sampling the invariant measure of ergodic stochastic differential equations with dynamics constrained on a manifold. We obtain the order conditions for sampling the invariant measure for a class of Runge–Kutta methods applied to the constrained overdamped Langevin equation. The analysis is valid for arbitrarily high order and relies on an extension of the exotic aromatic Butcher-series formalism. To illustrate the methodology, a method of order two is introduced, and numerical experiments on the sphere, the torus and the special linear group confirm the theoretical findings.


1998 ◽  
Vol 28 (1) ◽  
pp. 77-93 ◽  
Author(s):  
Terence Chan

AbstractThis paper presents a continuous time version of a stochastic investment model originally due to Wilkie. The model is constructed via stochastic differential equations. Explicit distributions are obtained in the case where the SDEs are driven by Brownian motion, which is the continuous time analogue of the time series with white noise residuals considered by Wilkie. In addition, the cases where the driving “noise” are stable processes and Gamma processes are considered.


Author(s):  
Yakup Ari

The financial time series have a high frequency and the difference between their observations is not regular. Therefore, continuous models can be used instead of discrete-time series models. The purpose of this chapter is to define Lévy-driven continuous autoregressive moving average (CARMA) models and their applications. The CARMA model is an explicit solution to stochastic differential equations, and also, it is analogue to the discrete ARMA models. In order to form a basis for CARMA processes, the structures of discrete-time processes models are examined. Then stochastic differential equations, Lévy processes, compound Poisson processes, and variance gamma processes are defined. Finally, the parameter estimation of CARMA(2,1) is discussed as an example. The most common method for the parameter estimation of the CARMA process is the pseudo maximum likelihood estimation (PMLE) method by mapping the ARMA coefficients to the corresponding estimates of the CARMA coefficients. Furthermore, a simulation study and a real data application are given as examples.


2006 ◽  
Vol 134 (10) ◽  
pp. 3006-3014 ◽  
Author(s):  
James A. Hansen ◽  
Cecile Penland

Abstract The delicate (and computationally expensive) nature of stochastic numerical modeling naturally leads one to look for efficient and/or convenient methods for integrating stochastic differential equations. Concomitantly, one may wish to sensibly add stochastic terms to an existing deterministic model without having to rewrite that model. In this note, two possibilities in the context of the fourth-order Runge–Kutta (RK4) integration scheme are examined. The first approach entails a hybrid of deterministic and stochastic integration schemes. In these examples, the hybrid RK4 generates time series with the correct climatological probability distributions. However, it is doubtful that the resulting time series are approximate solutions to the stochastic equations at every time step. The second approach uses the standard RK4 integration method modified by appropriately scaling stochastic terms. This is shown to be a special case of the general stochastic Runge–Kutta schemes considered by Ruemelin and has global convergence of order one. Thus, it gives excellent results for cases in which real noise with small but finite correlation time is approximated as white. This restriction on the type of problems to which the stochastic RK4 can be applied is strongly compensated by its computational efficiency.


2018 ◽  
Vol 33 (20) ◽  
pp. 1850117 ◽  
Author(s):  
Shinji Koshida

We propose a generalization of Schramm–Loewner evolution (SLE) that has internal degrees of freedom described by an affine Lie superalgebra. We give a general formulation of SLE corresponding to representation theory of an affine Lie superalgebra whose underlying finite-dimensional Lie superalgebra is basic classical type, and write down stochastic differential equations on internal degrees of freedom in case that the corresponding affine Lie superalgebra is [Formula: see text]. We also demonstrate computation of local martingales associated with the solution from a representation of [Formula: see text].


2005 ◽  
Vol 2005 (4) ◽  
pp. 437-453 ◽  
Author(s):  
Claude-Henri Lamarque ◽  
Jérôme Bastien ◽  
Matthieu Holland

Mechanical models are governed either by partial differential equations with boundary conditions and initial conditions (e.g., in the frame of continuum mechanics) or by ordinary differential equations (e.g., after discretization via Galerkin procedure or directly from the model description) with the initial conditions. In order to study dynamical behavior of mechanical systems with a finite number of degrees of freedom including nonsmooth terms (e.g., friction), we consider here problems governed by differential inclusions. To describe effects of particular constitutive laws, we add a delay term. In contrast to previous papers, we introduce delay via a Volterra kernel. We provide existence and uniqueness results by using an Euler implicit numerical scheme; then convergence with its order is established. A few numerical examples are given.


Sign in / Sign up

Export Citation Format

Share Document