scholarly journals Privacy Preservation for On-Chain Data in the Permission less Blockchain using Symmetric Key Encryption and Smart Contract

Author(s):  
Riaz Ahmad Ziar ◽  
Syed Irfanullah ◽  
Wajid Ullah Khan ◽  
Abdus Salam

Blockchain technology provides several suitable characteristics such as immutability, decentralization and verifiable ledger. It records the transactions in a decentralized way and can be integrated into several fields like eHealth, e-Government and smart cities etc. However, blockchain has several privacy and security issues, one of them is the on-chain data privacy. To deal with this issue we provide a privacy-preserving solution for permission less blockchain to empower the user to take control of transaction data in the open ledger. This work focuses on designing and developing the peer-to-peer system using symmetric cryptography and ethereum smart contract. In this scheme, we create smart contracts for the interaction of the data provider, data consumer, and access control list. Data providers register authorized users in the access control list. Data consumers can check their validity in the access control list. After successful validation, data consumers can request the security key from data providers to access secret information. Based on successful validation, a smart contract that is created between the data provider and data consumer is executed to send a key to the data consumer for accessing the secret information. The smart contracts of this proposed model are modeled in solidity, and the performance of the contracts is assessed in the Ropsten test network.

2017 ◽  
Vol 30 (1) ◽  
pp. 67-82
Author(s):  
Fabio Marfia ◽  
Nicoletta Fornara ◽  
Truc-Vien T. Nguyen

2021 ◽  
Author(s):  
Eben Exceline C ◽  
Sivakumar Nagarajan

Abstract The persevering pursuit of security has proved historically limiting the implementation of significant design improvements for Electronic Health Records (EHR). Such a vital requirement for these kinds of technical development is revamped now. This is because the patients are motivated by personalization and data science to participate in the health information sharing. The implementation of cloud computing has already shown substantial benefits for both clinical organizations and patients in managing electronic health records. The prime security issue of cloud-based electronic health records is that the patient is physically unable to own a medical record whereas a clinical organization can maintain one for them. The latter may collude with centralized cloud servers. So, there is a vulnerability of such records being tampered with in order to hide the medical malpractices. So, maintaining data integrity and data privacy becomes a significant challenge when deploying cloud computing. Therefore, in this paper, a consortium blockchain-based cloud-stored electronic health record is proposed which provides data integrity, data privacy, storage scalability, and fine-grained access control. Each process in outsourcing electronic health records to the cloud is incorporated as a transaction in a consortium ethereum blockchain through smart contracts. Through smart contracts, an attribute-based contract key is generated for the users that can decrypt the encrypted data stored in the cloud. The attribute-based contract key allows only users who are authorized to access the information ensuring data privacy and fine-grained access control. Moreover, the proposed scheme is proved to provide tamper-proof although the medical records are controlled by a group of clinical organizations.


Computers ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 39 ◽  
Author(s):  
Ronghua Xu ◽  
Yu Chen ◽  
Erik Blasch ◽  
Genshe Chen

While Internet of Things (IoT) technology has been widely recognized as an essential part of Smart Cities, it also brings new challenges in terms of privacy and security. Access control (AC) is among the top security concerns, which is critical in resource and information protection over IoT devices. Traditional access control approaches, like Access Control Lists (ACL), Role-based Access Control (RBAC) and Attribute-based Access Control (ABAC), are not able to provide a scalable, manageable and efficient mechanism to meet the requirements of IoT systems. Another weakness in today’s AC is the centralized authorization server, which can cause a performance bottleneck or be the single point of failure. Inspired by the smart contract on top of a blockchain protocol, this paper proposes BlendCAC, which is a decentralized, federated capability-based AC mechanism to enable effective protection for devices, services and information in large-scale IoT systems. A federated capability-based delegation model (FCDM) is introduced to support hierarchical and multi-hop delegation. The mechanism for delegate authorization and revocation is explored. A robust identity-based capability token management strategy is proposed, which takes advantage of the smart contract for registration, propagation, and revocation of the access authorization. A proof-of-concept prototype has been implemented on both resources-constrained devices (i.e., Raspberry PI nodes) and more powerful computing devices (i.e., laptops) and tested on a local private blockchain network. The experimental results demonstrate the feasibility of the BlendCAC to offer a decentralized, scalable, lightweight and fine-grained AC solution for IoT systems.


Author(s):  
Ronghua Xu ◽  
Yu Chen ◽  
Erik Blasch ◽  
Genshe Chen

While the Internet of Things (IoT) technology has been widely recognized as the essential part of Smart Cities, it also brings new challenges in terms of privacy and security. Access control (AC) is among the top security concerns, which is critical in resource and information protection over IoT devices. Traditional access control approaches, like Access Control Lists (ACL), Role-based Access Control (RBAC) and Attribute-based Access Control (ABAC), are not able to provide a scalable, manageable and efficient mechanism to meet the requirements of IoT systems. Another weakness in today's AC is the centralized authorization server, which can be the performance bottleneck or the single point of failure. Inspired by the smart contract on top of a blockchain protocol, this paper proposes BlendCAC, which is a decentralized, federated capability-based AC mechanism to enable an effective protection for devices, services and information in large scale IoT systems. A federated capability-based delegation model (FCDM) is introduced to support hierarchical and multi-hop delegation. The mechanism for delegate authorization and revocation is explored. A robust identity-based capability token management strategy is proposed, which takes advantage of the smart contract for registering, propagating and revocating of the access authorization. A proof-of-concept prototype has been implemented on both resources-constrained devices (i.e., Raspberry PI node) and more powerful computing devices (i.e., laptops), and tested on a local private blockchain network. The experimental results demonstrate the feasibility of the BlendCAC to offer a decentralized, scalable, lightweight and fine-grained AC solution for IoT systems.


Author(s):  
Mehdi Sookhak ◽  
Mohammad Reza Jabbarpour ◽  
Nader Sohrabi Safa ◽  
F. Richard Yu

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Abdullah Al Omar ◽  
Abu Kaisar Jamil ◽  
Amith Khandakar ◽  
Abdur Razzak Uzzal ◽  
Rabeya Bosri ◽  
...  

2021 ◽  
Vol 54 (5) ◽  
pp. 1-34
Author(s):  
Vimal Dwivedi ◽  
Vishwajeet Pattanaik ◽  
Vipin Deval ◽  
Abhishek Dixit ◽  
Alex Norta ◽  
...  

Smart contracts are a key component of today’s blockchains. They are critical in controlling decentralized autonomous organizations (DAO). However, smart contracts are not yet legally binding nor enforceable; this makes it difficult for businesses to adopt the DAO paradigm. Therefore, this study reviews existing Smart Contract Languages (SCL) and identifies properties that are critical to any future SCL for drafting legally binding contracts. This is achieved by conducting a Systematic Literature Review (SLR) of white- and grey literature published between 2015 and 2019. Using the SLR methodology, 45 Selected and 28 Supporting Studies detailing 45 state-of-the-art SCLs are selected. Finally, 10 SCL properties that enable legally compliant DAOs are discovered, and specifications for developing SCLs are explored.


Sign in / Sign up

Export Citation Format

Share Document