scholarly journals First natural transverse frequency of truncated cone and wedge beams

2018 ◽  
Vol 17 (1) ◽  
pp. 3-12
Author(s):  
Vazgen Bagdasaryan ◽  
Marek Chalecki ◽  
Michał Gierasimiuk ◽  
Jacek Jaworski ◽  
Olga Szlachteka
1992 ◽  
Vol 22 (10) ◽  
pp. 1562-1567 ◽  
Author(s):  
Fernand Pagé ◽  
Bady Badibanga ◽  
Annie Sauvesty ◽  
Colette Ansseau

A method for rapidly estimating the rootlet volume and mass in sugar maple groves was developed in relation with the rootlet size. Soil samples were obtained with corers and cut in 2-cm thick slices. The number of rootlets of diameter classes <0.3, 0.3–0.5, 0.5–0.8, and 0.8–1.0 mm were determined under microscope (× 150) on the upper surface of slices. Rootlet surface for each class was measured on thin sections of soil, with an optic microscope connected to a digitalizing board. Mean rootlet surface [Formula: see text] showed a small standard deviation within each diameter class. The rootlet surface (S) on a surface of soil St can be estimated as [Formula: see text], where N is the number of rootlets observed in nc fields of observation, each field having a surface So. If two soil slices are located at depths h1 and h2, respectively, and if the rootlet surfaces of those slices are S1 and S2, the rootlet volume V of the first slice corresponds approximately to the volume of a truncated cone, and can be calculated as V = [S1 + S2 + (S1S2)0,5] (h2–h1)/3. The rootlet density (g•cm−3 of root) was also determined for each diameter class. The standard deviation from [Formula: see text], the mean density for each diameter class was small. Thus, the rootlet mass M was determined as [Formula: see text]. Estimated and real rootlet volume and mass values were compared. A difference of about 10% was found between estimated and real values.


1952 ◽  
Vol 19 (3) ◽  
pp. 375-380
Author(s):  
Morris Feigen

Abstract It is shown that the optimum wall thickness of a cylindrical round tube column is a function of load only and is independent of diameter. The optimum wall thickness of a tapered round thin-walled column is found to be constant along its length. The optimum shape of a tapered round thin-walled column is derived, being that column whose bending stress in the buckled state is constant along its length. The weight ratio of the optimum tapered column to an equal-strength optimum cylindrical column is found to be 0.8924. It is shown that a double truncated cone whose diameter ratio is in the range 0.35 ⩽ D1/D2 ⩽ 0.50 closely approaches the optimum column. If it is specified that no portion of the double truncated cone shall yield, then the weight advantage of the cone over the cylindrical column is rapidly lost as the stress in the cylindrical column approaches the yield stress. In the inelastic range the weight advantage of the tapered column will be less than in the elastic range.


2017 ◽  
Vol 8 (2) ◽  
pp. 178-182 ◽  
Author(s):  
F. H. S. Karp ◽  
A. F. Colaço ◽  
R. G. Trevisan ◽  
J. P. Molin

LiDAR technology is one option to collect spatial data about canopy geometry in many crops. However, the method of data acquisition includes many errors related to the LiDAR sensor, the GNSS receiver and the data acquisition set up. Therefore, the objective of this study was to evaluate the errors involved in the data acquisition from a mobile terrestrial laser scanner (MTLS). Regular shaped objects were scanned with a developed MTLS in two different tests: i) with the system mounted on a vehicle and ii) with the system mounted on a platform running over a rail. The errors of area estimation varied between 0.001 and 0.071 m2 for the circle, square and triangle objects. The errors on volume estimations were between 0.0003 and 0.0017 m3, for cylinders and truncated cone.


Sign in / Sign up

Export Citation Format

Share Document