scholarly journals More on the normalized Laplacian Estrada index

2014 ◽  
Vol 8 (2) ◽  
pp. 346-357 ◽  
Author(s):  
Yilun Shang

Let G be a simple graph of order N. The normalized Laplacian Estrada index of G is defined as NEE(G)=?Ni=1 e?i?1, where ?1, ?2,... , ?N are the normalized Laplacian eigenvalues of G. In this paper, we give a tight lower bound for NEE of general graphs. We also calculate NEE for a class of treelike fractals, which contains T fractal and Peano basin fractal as its limiting cases. It is shown that NEE scales linearly with the order of the fractal, in line with a best possible lower bound for connected bipartite graphs.

2003 ◽  
Vol 12 (5-6) ◽  
pp. 477-494 ◽  
Author(s):  
Noga Alon ◽  
Michael Krivelevich ◽  
Benny Sudakov

For a graph H and an integer n, the Turán number is the maximum possible number of edges in a simple graph on n vertices that contains no copy of H. H is r-degenerate if every one of its subgraphs contains a vertex of degree at most r. We prove that, for any fixed bipartite graph H in which all degrees in one colour class are at most r, . This is tight for all values of r and can also be derived from an earlier result of Füredi. We also show that there is an absolute positive constant c such that, for every fixed bipartite r-degenerate graph H, This is motivated by a conjecture of Erdős that asserts that, for every such H, For two graphs G and H, the Ramsey number is the minimum number n such that, in any colouring of the edges of the complete graph on n vertices by red and blue, there is either a red copy of G or a blue copy of H. Erdős conjectured that there is an absolute constant c such that, for any graph G with m edges, . Here we prove this conjecture for bipartite graphs G, and prove that for general graphs G with m edges, for some absolute positive constant c.These results and some related ones are derived from a simple and yet surprisingly powerful lemma, proved, using probabilistic techniques, at the beginning of the paper. This lemma is a refined version of earlier results proved and applied by various researchers including Rödl, Kostochka, Gowers and Sudakov.


2015 ◽  
Vol 29 ◽  
pp. 237-253 ◽  
Author(s):  
Kinkar Das ◽  
SHAOWEI SUN

Let $G=(V,\,E)$ be a simple graph of order $n$ and the normalized Laplacian eigenvalues $\rho_1\geq \rho_2\geq \cdots\geq\rho_{n-1}\geq \rho_n=0$. The normalized Laplacian energy (or Randi\'c energy) of $G$ without any isolated vertex is defined as $$RE(G)=\sum_{i=1}^{n}|\rho_i-1|.$$ In this paper, a lower bound on $\rho_1$ of connected graph $G$ ($G$ is not isomorphic to complete graph) is given and the extremal graphs (that is, the second minimal normalized Laplacian spectral radius of connected graphs) are characterized. Moreover, Nordhaus-Gaddum type results for $\rho_1$ are obtained. Recently, Gutman et al.~gave a conjecture on Randi\'c energy of connected graph [I. Gutman, B. Furtula, \c{S}. B. Bozkurt, On Randi\'c energy, Linear Algebra Appl. 442 (2014) 50--57]. Here this conjecture for starlike trees is proven.


10.37236/93 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Guy Wolfovitz

We consider the next random process for generating a maximal $H$-free graph: Given a fixed graph $H$ and an integer $n$, start by taking a uniformly random permutation of the edges of the complete $n$-vertex graph $K_n$. Then, traverse the edges of $K_n$ according to the order imposed by the permutation and add each traversed edge to an (initially empty) evolving $n$-vertex graph - unless its addition creates a copy of $H$. The result of this process is a maximal $H$-free graph ${\Bbb M}_n(H)$. Our main result is a new lower bound on the expected number of edges in ${\Bbb M}_n(H)$, for $H$ that is regular, strictly $2$-balanced. As a corollary, we obtain new lower bounds for Turán numbers of complete, balanced bipartite graphs. Namely, for fixed $r \ge 5$, we show that ex$(n, K_{r,r}) = \Omega(n^{2-2/(r+1)}(\ln\ln n)^{1/(r^2-1)})$. This improves an old lower bound of Erdős and Spencer. Our result relies on giving a non-trivial lower bound on the probability that a given edge is included in ${\Bbb M}_n(H)$, conditioned on the event that the edge is traversed relatively (but not trivially) early during the process.


2022 ◽  
Vol 69 (1) ◽  
pp. 1-18
Author(s):  
Anupam Gupta ◽  
David G. Harris ◽  
Euiwoong Lee ◽  
Jason Li

In the k -cut problem, we want to find the lowest-weight set of edges whose deletion breaks a given (multi)graph into k connected components. Algorithms of Karger and Stein can solve this in roughly O ( n 2k ) time. However, lower bounds from conjectures about the k -clique problem imply that Ω ( n (1- o (1)) k ) time is likely needed. Recent results of Gupta, Lee, and Li have given new algorithms for general k -cut in n 1.98k + O(1) time, as well as specialized algorithms with better performance for certain classes of graphs (e.g., for small integer edge weights). In this work, we resolve the problem for general graphs. We show that the Contraction Algorithm of Karger outputs any fixed k -cut of weight α λ k with probability Ω k ( n - α k ), where λ k denotes the minimum k -cut weight. This also gives an extremal bound of O k ( n k ) on the number of minimum k -cuts and an algorithm to compute λ k with roughly n k polylog( n ) runtime. Both are tight up to lower-order factors, with the algorithmic lower bound assuming hardness of max-weight k -clique. The first main ingredient in our result is an extremal bound on the number of cuts of weight less than 2 λ k / k , using the Sunflower lemma. The second ingredient is a fine-grained analysis of how the graph shrinks—and how the average degree evolves—in the Karger process.


Author(s):  
Nurdin Hinding ◽  
Hye Kyung Kim ◽  
Nurtiti Sunusi ◽  
Riskawati Mise

For a simple graph G with a vertex set V G and an edge set E G , a labeling f : V G ∪ ​ E G ⟶ 1,2 , ⋯ , k is called a vertex irregular total k − labeling of G if for any two different vertices x and y in V G we have w t x ≠ w t y where w t x = f x + ∑ u ∈ V G f x u . The smallest positive integer k such that G has a vertex irregular total k − labeling is called the total vertex irregularity strength of G , denoted by tvs G . The lower bound of tvs G for any graph G have been found by Baca et. al. In this paper, we determined the exact value of the total vertex irregularity strength of the hexagonal cluster graph on n cluster for n ≥ 2 . Moreover, we show that the total vertex irregularity strength of the hexagonal cluster graph on n cluster is 3 n 2 + 1 / 2 .


1995 ◽  
Vol 4 (1) ◽  
pp. 81-95 ◽  
Author(s):  
W. Mader

Let G be a minimally n-edge-connected finite simple graph with vertex number |G| ≥ 2n + 2 + [3/n] and let n ≥ 3 be odd. It is proved that the number of vertices of degree n in G is at least ((n − 1 − ∈n)/(2n + 1))|G| + 2 + 2∈n, where ∈n = (3n + 3)/(2n2 − 3n − 3), and that for every n ≡ 3 (mod 4) this lower bound is attained by infinitely many minimally n-edge-connected finite simple graphs.


2000 ◽  
Vol 47 (3) ◽  
pp. 205-215 ◽  
Author(s):  
Miroslav Petrović ◽  
Ivan Gutman ◽  
Mirko Lepović ◽  
Bojana Milekić

2009 ◽  
Vol 430 (8-9) ◽  
pp. 2503-2510 ◽  
Author(s):  
Gui-Xian Tian ◽  
Ting-Zhu Huang ◽  
Bo Zhou

10.37236/5222 ◽  
2016 ◽  
Vol 23 (4) ◽  
Author(s):  
Robert Brijder ◽  
Lorenzo Traldi

Several properties of the isotropic matroid of a looped simple graph are presented. Results include a characterization of the multimatroids that are associated with isotropic matroids and several ways in which the isotropic matroid of $G$ incorporates information about graphs locally equivalent to $G$. Specific results of the latter type include a characterization of graphs that are locally equivalent to bipartite graphs, a direct proof that two forests are isomorphic if and only if their isotropic matroids are isomorphic, and a way to express local equivalence indirectly, using only edge pivots.


Sign in / Sign up

Export Citation Format

Share Document