Turán Numbers of Bipartite Graphs and Related Ramsey-Type Questions

2003 ◽  
Vol 12 (5-6) ◽  
pp. 477-494 ◽  
Author(s):  
Noga Alon ◽  
Michael Krivelevich ◽  
Benny Sudakov

For a graph H and an integer n, the Turán number is the maximum possible number of edges in a simple graph on n vertices that contains no copy of H. H is r-degenerate if every one of its subgraphs contains a vertex of degree at most r. We prove that, for any fixed bipartite graph H in which all degrees in one colour class are at most r, . This is tight for all values of r and can also be derived from an earlier result of Füredi. We also show that there is an absolute positive constant c such that, for every fixed bipartite r-degenerate graph H, This is motivated by a conjecture of Erdős that asserts that, for every such H, For two graphs G and H, the Ramsey number is the minimum number n such that, in any colouring of the edges of the complete graph on n vertices by red and blue, there is either a red copy of G or a blue copy of H. Erdős conjectured that there is an absolute constant c such that, for any graph G with m edges, . Here we prove this conjecture for bipartite graphs G, and prove that for general graphs G with m edges, for some absolute positive constant c.These results and some related ones are derived from a simple and yet surprisingly powerful lemma, proved, using probabilistic techniques, at the beginning of the paper. This lemma is a refined version of earlier results proved and applied by various researchers including Rödl, Kostochka, Gowers and Sudakov.

Author(s):  
Saeed Shaebani ◽  
Saeed Kosari ◽  
Leila Asgharsharghi

Let [Formula: see text] be a positive integer and [Formula: see text] be a simple graph. A restrained [Formula: see text]-rainbow dominating function (R[Formula: see text]RDF) of [Formula: see text] is a function [Formula: see text] from the vertex set [Formula: see text] to the family of all subsets of [Formula: see text], such that every vertex [Formula: see text] with [Formula: see text] satisfies both of the conditions [Formula: see text] and [Formula: see text] simultaneously, where [Formula: see text] denotes the open neighborhood of [Formula: see text]. The weight of an R[Formula: see text]RDF is the value [Formula: see text]. The restrained[Formula: see text]-rainbow domination number of [Formula: see text], denoted by [Formula: see text], is the minimum weight of an R[Formula: see text]RDF of [Formula: see text]. The restrained[Formula: see text]-rainbow reinforcement number [Formula: see text] of [Formula: see text], is defined to be the minimum number of edges that must be added to [Formula: see text] in order to decrease the restrained [Formula: see text]-rainbow domination number. In this paper, we determine the restrained [Formula: see text]-rainbow reinforcement number of some special classes of graphs. Also, we present some bounds on the restrained [Formula: see text]-rainbow reinforcement number of general graphs.


2014 ◽  
Vol 8 (2) ◽  
pp. 346-357 ◽  
Author(s):  
Yilun Shang

Let G be a simple graph of order N. The normalized Laplacian Estrada index of G is defined as NEE(G)=?Ni=1 e?i?1, where ?1, ?2,... , ?N are the normalized Laplacian eigenvalues of G. In this paper, we give a tight lower bound for NEE of general graphs. We also calculate NEE for a class of treelike fractals, which contains T fractal and Peano basin fractal as its limiting cases. It is shown that NEE scales linearly with the order of the fractal, in line with a best possible lower bound for connected bipartite graphs.


2018 ◽  
Author(s):  
Bruno Pasqualotto Cavalar

The Ramsey number R(H) of a graph H is the minimum number n such that there exists a graph G on n vertices with the property that every two-coloring of its edges contains a monochromatic copy of H. In this work we study a variant of this notion, called the oriented Ramsey problem, for an acyclic oriented graph H~ , in which we require that every orientation G~ of the graph G contains a copy of H~ . We also study the threshold function for this problem in random graphs. Finally, we consider the isometric case, in which we require the copy to be isometric, by which we mean that, for every two vertices x, y 2 V (H~ ) and their respective copies x0, y0 in G~ , the distance between x and y is equal to the distance between x0 and y0.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 735
Author(s):  
Tomasz Dzido ◽  
Renata Zakrzewska

We consider the important generalisation of Ramsey numbers, namely on-line Ramsey numbers. It is easiest to understand them by considering a game between two players, a Builder and Painter, on an infinite set of vertices. In each round, the Builder joins two non-adjacent vertices with an edge, and the Painter colors the edge red or blue. An on-line Ramsey number r˜(G,H) is the minimum number of rounds it takes the Builder to force the Painter to create a red copy of graph G or a blue copy of graph H, assuming that both the Builder and Painter play perfectly. The Painter’s goal is to resist to do so for as long as possible. In this paper, we consider the case where G is a path P4 and H is a path P10 or P11.


10.37236/2471 ◽  
2012 ◽  
Vol 19 (4) ◽  
Author(s):  
Craig Timmons

Let $F$ be a graph.  A graph $G$ is $F$-free if it does not contain $F$ as a subgraph.  The Turán number of $F$, written $\textrm{ex}(n,F)$, is the maximum number of edges in an $F$-free graph with $n$ vertices.  The determination of Turán numbers of bipartite graphs is a challenging and widely investigated problem.  In this paper we introduce an ordered version of the Turán problem for bipartite graphs.  Let $G$ be a graph with $V(G) = \{1, 2, \dots , n \}$ and view the vertices of $G$ as being ordered in the natural way.  A zig-zag $K_{s,t}$, denoted $Z_{s,t}$, is a complete bipartite graph $K_{s,t}$ whose parts $A = \{n_1 < n_2 < \dots < n_s \}$ and $B = \{m_1 < m_2 < \dots < m_t \}$ satisfy the condition $n_s < m_1$.  A zig-zag $C_{2k}$ is an even cycle $C_{2k}$ whose vertices in one part precede all of those in the other part.  Write $\mathcal{Z}_{2k}$ for the family of zig-zag $2k$-cycles.  We investigate the Turán numbers $\textrm{ex}(n,Z_{s,t})$ and $\textrm{ex}(n,\mathcal{Z}_{2k})$.  In particular we show $\textrm{ex}(n, Z_{2,2}) \leq \frac{2}{3}n^{3/2} + O(n^{5/4})$.  For infinitely many $n$ we construct a $Z_{2,2}$-free $n$-vertex graph with more than $(n - \sqrt{n} - 1) + \textrm{ex} (n,K_{2,2})$ edges.


2021 ◽  
pp. 2150041
Author(s):  
Hanxiao Qiao ◽  
Ke Wang ◽  
Suonan Renqian ◽  
Renqingcuo

For bipartite graphs [Formula: see text], the bipartite Ramsey number [Formula: see text] is the least positive integer [Formula: see text] so that any coloring of the edges of [Formula: see text] with [Formula: see text] colors will result in a copy of [Formula: see text] in the [Formula: see text]th color for some [Formula: see text]. In this paper, we get the exact value of [Formula: see text], and obtain the upper and lower bounds of [Formula: see text], where [Formula: see text] denotes a path with [Formula: see text] vertices.


1991 ◽  
Vol 43 (1) ◽  
pp. 182-212 ◽  
Author(s):  
K. I. Oskolkov

AbstractThe following special function of two real variables x2 and x1 is considered: and its connections with the incomplete Gaussian sums where ω are intervals of length |ω| ≤1. In particular, it is proved that for each fixed x2 and uniformly in X2 the function H(x2, x1) is of weakly bounded 2-variation in the variable x1 over the period [0, 1]. In terms of the sums W this means that for collections Ω = {ωk}, consisting of nonoverlapping intervals ωk ∪ [0,1) the following estimate is valid: where card denotes the number of elements, and c is an absolute positive constant. The exact value of the best absolute constant к in the estimate (which is due to G. H. Hardy and J. E. Littlewood) is discussed.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
S. Monikandan ◽  
S. Sundar Raj ◽  
C. Jayasekaran ◽  
A. P. Santhakumaran

A vertex-deleted subgraph of a graph G is called a card of G. A card of G with which the degree of the deleted vertex is also given is called a degree associated card (or dacard) of G. The degree associated reconstruction number drn (G) of a graph G is the size of the smallest collection of dacards of G that uniquely determines G. The adversary degree associated reconstruction number of a graph G, adrn(G), is the minimum number k such that every collection of k dacards of G that uniquely determines G. In this paper, we show that adrn of wheels and complete bipartite graphs on at least 4 vertices is 2 or 3.


2016 ◽  
Vol 2016 ◽  
pp. 1-5
Author(s):  
Khalid A. Alsatami ◽  
Hong-Jian Lai ◽  
Xindong Zhang

A dicycle cover of a digraph D is a family F of dicycles of D such that each arc of D lies in at least one dicycle in F. We investigate the problem of determining the upper bounds for the minimum number of dicycles which cover all arcs in a strong digraph. Best possible upper bounds of dicycle covers are obtained in a number of classes of digraphs including strong tournaments, Hamiltonian oriented graphs, Hamiltonian oriented complete bipartite graphs, and families of possibly non-Hamiltonian digraphs obtained from these digraphs via a sequence of 2-sum operations.


10.37236/5222 ◽  
2016 ◽  
Vol 23 (4) ◽  
Author(s):  
Robert Brijder ◽  
Lorenzo Traldi

Several properties of the isotropic matroid of a looped simple graph are presented. Results include a characterization of the multimatroids that are associated with isotropic matroids and several ways in which the isotropic matroid of $G$ incorporates information about graphs locally equivalent to $G$. Specific results of the latter type include a characterization of graphs that are locally equivalent to bipartite graphs, a direct proof that two forests are isomorphic if and only if their isotropic matroids are isomorphic, and a way to express local equivalence indirectly, using only edge pivots.


Sign in / Sign up

Export Citation Format

Share Document