scholarly journals Density-based clustering with constraints

2019 ◽  
Vol 16 (2) ◽  
pp. 469-489 ◽  
Author(s):  
Piotr Lasek ◽  
Jarek Gryz

In this paper we present our ic-NBC and ic-DBSCAN algorithms for data clustering with constraints. The algorithms are based on density-based clustering algorithms NBC and DBSCAN but allow users to incorporate background knowledge into the process of clustering by means of instance constraints. The knowledge about anticipated groups can be applied by specifying the so-called must-link and cannot-link relationships between objects or points. These relationships are then incorporated into the clustering process. In the proposed algorithms this is achieved by properly merging resulting clusters and introducing a new notion of deferred points which are temporarily excluded from clustering and assigned to clusters based on their involvement in cannot-link relationships. To examine the algorithms, we have carried out a number of experiments. We used benchmark data sets and tested the efficiency and quality of the results. We have also measured the efficiency of the algorithms against their original versions. The experiments prove that the introduction of instance constraints improves the quality of both algorithms. The efficiency is only insignificantly reduced and is due to extra computation related to the introduced constraints.

2011 ◽  
pp. 24-32 ◽  
Author(s):  
Nicoleta Rogovschi ◽  
Mustapha Lebbah ◽  
Younès Bennani

Most traditional clustering algorithms are limited to handle data sets that contain either continuous or categorical variables. However data sets with mixed types of variables are commonly used in data mining field. In this paper we introduce a weighted self-organizing map for clustering, analysis and visualization mixed data (continuous/binary). The learning of weights and prototypes is done in a simultaneous manner assuring an optimized data clustering. More variables has a high weight, more the clustering algorithm will take into account the informations transmitted by these variables. The learning of these topological maps is combined with a weighting process of different variables by computing weights which influence the quality of clustering. We illustrate the power of this method with data sets taken from a public data set repository: a handwritten digit data set, Zoo data set and other three mixed data sets. The results show a good quality of the topological ordering and homogenous clustering.


2016 ◽  
Vol 16 (6) ◽  
pp. 27-42 ◽  
Author(s):  
Minghan Yang ◽  
Xuedong Gao ◽  
Ling Li

Abstract Although Clustering Algorithm Based on Sparse Feature Vector (CABOSFV) and its related algorithms are efficient for high dimensional sparse data clustering, there exist several imperfections. Such imperfections as subjective parameter designation and order sensibility of clustering process would eventually aggravate the time complexity and quality of the algorithm. This paper proposes a parameter adjustment method of Bidirectional CABOSFV for optimization purpose. By optimizing Parameter Vector (PV) and Parameter Selection Vector (PSV) with the objective function of clustering validity, an improved Bidirectional CABOSFV algorithm using simulated annealing is proposed, which circumvents the requirement of initial parameter determination. The experiments on UCI data sets show that the proposed algorithm, which can perform multi-adjustment clustering, has a higher accurateness than single adjustment clustering, along with a decreased time complexity through iterations.


Author(s):  
B. K. Tripathy ◽  
Hari Seetha ◽  
M. N. Murty

Data clustering plays a very important role in Data mining, machine learning and Image processing areas. As modern day databases have inherent uncertainties, many uncertainty-based data clustering algorithms have been developed in this direction. These algorithms are fuzzy c-means, rough c-means, intuitionistic fuzzy c-means and the means like rough fuzzy c-means, rough intuitionistic fuzzy c-means which base on hybrid models. Also, we find many variants of these algorithms which improve them in different directions like their Kernelised versions, possibilistic versions, and possibilistic Kernelised versions. However, all the above algorithms are not effective on big data for various reasons. So, researchers have been trying for the past few years to improve these algorithms in order they can be applied to cluster big data. The algorithms are relatively few in comparison to those for datasets of reasonable size. It is our aim in this chapter to present the uncertainty based clustering algorithms developed so far and proposes a few new algorithms which can be developed further.


Author(s):  
Ting Xie ◽  
Taiping Zhang

As a powerful unsupervised learning technique, clustering is the fundamental task of big data analysis. However, many traditional clustering algorithms for big data that is a collection of high dimension, sparse and noise data do not perform well both in terms of computational efficiency and clustering accuracy. To alleviate these problems, this paper presents Feature K-means clustering model on the feature space of big data and introduces its fast algorithm based on Alternating Direction Multiplier Method (ADMM). We show the equivalence of the Feature K-means model in the original space and the feature space and prove the convergence of its iterative algorithm. Computationally, we compare the Feature K-means with Spherical K-means and Kernel K-means on several benchmark data sets, including artificial data and four face databases. Experiments show that the proposed approach is comparable to the state-of-the-art algorithm in big data clustering.


Algorithms ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 177 ◽  
Author(s):  
Xuedong Gao ◽  
Minghan Yang

Clustering is one of the main tasks of machine learning. Internal clustering validation indexes (CVIs) are used to measure the quality of several clustered partitions to determine the local optimal clustering results in an unsupervised manner, and can act as the objective function of clustering algorithms. In this paper, we first studied several well-known internal CVIs for categorical data clustering, and proved the ineffectiveness of evaluating the partitions of different numbers of clusters without any inter-cluster separation measures or assumptions; the accurateness of separation, along with its coordination with the intra-cluster compactness measures, can notably affect performance. Then, aiming to enhance the internal clustering validation measurement, we proposed a new internal CVI—clustering utility based on the averaged information gain of isolating each cluster (CUBAGE)—which measures both the compactness and the separation of the partition. The experimental results supported our findings with regard to the existing internal CVIs, and showed that the proposed CUBAGE outperforms other internal CVIs with or without a pre-known number of clusters.


2016 ◽  
Vol 25 (3) ◽  
pp. 431-440 ◽  
Author(s):  
Archana Purwar ◽  
Sandeep Kumar Singh

AbstractThe quality of data is an important task in the data mining. The validity of mining algorithms is reduced if data is not of good quality. The quality of data can be assessed in terms of missing values (MV) as well as noise present in the data set. Various imputation techniques have been studied in MV study, but little attention has been given on noise in earlier work. Moreover, to the best of knowledge, no one has used density-based spatial clustering of applications with noise (DBSCAN) clustering for MV imputation. This paper proposes a novel technique density-based imputation (DBSCANI) built on density-based clustering to deal with incomplete values in the presence of noise. Density-based clustering algorithm proposed by Kriegal groups the objects according to their density in spatial data bases. The high-density regions are known as clusters, and the low-density regions refer to the noise objects in the data set. A lot of experiments have been performed on the Iris data set from life science domain and Jain’s (2D) data set from shape data sets. The performance of the proposed method is evaluated using root mean square error (RMSE) as well as it is compared with existing K-means imputation (KMI). Results show that our method is more noise resistant than KMI on data sets used under study.


2017 ◽  
Author(s):  
Herbert J. Bernstein ◽  
Lawrence C. Andrews ◽  
James Foadi ◽  
Martin R. Fuchs ◽  
Jean Jakoncic ◽  
...  

KAMO and Blend provide particularly effective tools to automatically manage the merging of large numbers of data sets from serial crystallography. The requirement for manual intervention in the process can be reduced by extending Blend to support additional clustering options to increase the sensitivity to differences in unit cell parameters and to allow for clustering of nearly complete datasets on the basis of intensity or amplitude differences. If datasets are already sufficiently complete to permit it, apply KAMO once, just for reflections. If starting from incomplete datasets, one applies KAMO twice, first using cell parameters. In this step either the simple cell vector distance of the original Blend is used, or the more sensitive NCDist, to find clusters to merge to achieve sufficient completeness to allow intensities or amplitudes to be compared. One then uses KAMO again using the correlation between the reflections at the common HKLs to merge clusters in a way sensitive to structural differences that may not perturb the cell parameters sufficiently to make meaningful clusters.Many groups have developed effective clustering algorithms that use a measurable physical parameter from each diffraction still or wedge to cluster the data into categories which can then be merged to, hopefully, yield the electron density from a single protein iso-form. What is striking about many of these physical parameters is that they are largely independent from one another. Consequently, it should be possible to greatly improve the efficacy of data clustering software by using a multi-stage partitioning strategy. Here, we have demonstrated one possible approach to multi-stage data clustering. Our strategy was to use unit-cell clustering until merged data was of sufficient completeness to then use intensity based clustering. We have demonstrated that, using this strategy, we were able to accurately cluster data sets from crystals that had subtle differences.


Author(s):  
Rina Refianti ◽  
Achmad Benny Mutiara ◽  
Asep Juarna ◽  
Adang Suhendra

In recent years, two new data clustering algorithms have been proposed. One of them isAffinity Propagation (AP). AP is a new data clustering technique that use iterative message passing and consider all data points as potential exemplars. Two important inputs of AP are a similarity matrix (SM) of the data and the parameter ”preference” p. Although the original AP algorithm has shown much success in data clustering, it still suffer from one limitation: it is not easy to determine the value of the parameter ”preference” p which can result an optimal clustering solution. To resolve this limitation, we propose a new model of the parameter ”preference” p, i.e. it is modeled based on the similarity distribution. Having the SM and p, Modified Adaptive AP (MAAP) procedure is running. MAAP procedure means that we omit the adaptive p-scanning algorithm as in original Adaptive-AP (AAP) procedure. Experimental results on random non-partition and partition data sets show that (i) the proposed algorithm, MAAP-DDP, is slower than original AP for random non-partition dataset, (ii) for random 4-partition dataset and real datasets the proposed algorithm has succeeded to identify clusters according to the number of dataset’s true labels with the execution times that are comparable with those original AP. Beside that the MAAP-DDP algorithm demonstrates more feasible and effective than original AAP procedure.


Obtaining high quality groups and processing mixed and incomplete data (DMI) are still problems in the data clustering. Recently a method was proposed that improves the results obtained by clustering algorithms, the PAntSA; but this was only designed and tested for numerical data. For this reason, this paper analyzes the influence of applying the PAntSA in the performance of DMI restricted clustering algorithms. For this, the results of different algorithms are compared before and after applying the PAntSA. The comparisons made provide experimental evidence that the PAntSA algorithm improves the quality of the groups obtained by traditional DMI clustering methods.


Sign in / Sign up

Export Citation Format

Share Document