scholarly journals The reciprocal reverse Wiener index of unicyclic graphs

Filomat ◽  
2014 ◽  
Vol 28 (2) ◽  
pp. 249-255
Author(s):  
Jianping Li ◽  
Bo Zhou

The reciprocal reverse Wiener index R?(G) of a connected graph G is defined in mathematical chemistry as the sum of weights 1/d(G)?dG(u,v) of all unordered pairs of distinct vertices u and v with dG(u, v) < d(G), where dG(u, v) is the distance between vertices u and v in G and d(G) is the diameter of G. We determine the minimum and maximum reciprocal reverse Wiener indices in the class of n-vertex unicyclic graphs and characterize the corresponding extremal graphs.

Mathematics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 17 ◽  
Author(s):  
Abdollah Alhevaz ◽  
Maryam Baghipur ◽  
Hilal A. Ganie ◽  
Yilun Shang

The generalized distance matrix D α ( G ) of a connected graph G is defined as D α ( G ) = α T r ( G ) + ( 1 − α ) D ( G ) , where 0 ≤ α ≤ 1 , D ( G ) is the distance matrix and T r ( G ) is the diagonal matrix of the node transmissions. In this paper, we extend the concept of energy to the generalized distance matrix and define the generalized distance energy E D α ( G ) . Some new upper and lower bounds for the generalized distance energy E D α ( G ) of G are established based on parameters including the Wiener index W ( G ) and the transmission degrees. Extremal graphs attaining these bounds are identified. It is found that the complete graph has the minimum generalized distance energy among all connected graphs, while the minimum is attained by the star graph among trees of order n.


Author(s):  
Hanyuan Deng ◽  
G. C. Keerthi Vasan ◽  
S. Balachandran

The Wiener index [Formula: see text] of a connected graph [Formula: see text] is the sum of distances between all pairs of vertices of [Formula: see text]. A connected graph [Formula: see text] is said to be a cactus if each of its blocks is either a cycle or an edge. Let [Formula: see text] be the set of all [Formula: see text]-vertex cacti containing exactly [Formula: see text] cycles. Liu and Lu (2007) determined the unique graph in [Formula: see text] with the minimum Wiener index. Gutman, Li and Wei (2017) determined the unique graph in [Formula: see text] with maximum Wiener index. In this paper, we present the second-minimum Wiener index of graphs in [Formula: see text] and identify the corresponding extremal graphs, which solve partially the problem proposed by Gutman et al. [Cacti with [Formula: see text]-vertices and [Formula: see text] cycles having extremal Wiener index, Discrete Appl. Math. 232 (2017) 189–200] in 2017.


2019 ◽  
Vol 17 (1) ◽  
pp. 668-676
Author(s):  
Tingzeng Wu ◽  
Huazhong Lü

Abstract Let G be a connected graph and u and v two vertices of G. The hyper-Wiener index of graph G is $\begin{array}{} WW(G)=\frac{1}{2}\sum\limits_{u,v\in V(G)}(d_{G}(u,v)+d^{2}_{G}(u,v)) \end{array}$, where dG(u, v) is the distance between u and v. In this paper, we first give the recurrence formulae for computing the hyper-Wiener indices of polyphenyl chains and polyphenyl spiders. We then obtain the sharp upper and lower bounds for the hyper-Wiener index among polyphenyl chains and polyphenyl spiders, respectively. Moreover, the corresponding extremal graphs are determined.


Symmetry ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1276 ◽  
Author(s):  
Abdollah Alhevaz ◽  
Maryam Baghipur ◽  
Yilun Shang

For a simple undirected connected graph G of order n, let D ( G ) , D L ( G ) , D Q ( G ) and T r ( G ) be, respectively, the distance matrix, the distance Laplacian matrix, the distance signless Laplacian matrix and the diagonal matrix of the vertex transmissions of G. The generalized distance matrix D α ( G ) is signified by D α ( G ) = α T r ( G ) + ( 1 - α ) D ( G ) , where α ∈ [ 0 , 1 ] . Here, we propose a new kind of Estrada index based on the Gaussianization of the generalized distance matrix of a graph. Let ∂ 1 , ∂ 2 , … , ∂ n be the generalized distance eigenvalues of a graph G. We define the generalized distance Gaussian Estrada index P α ( G ) , as P α ( G ) = ∑ i = 1 n e - ∂ i 2 . Since characterization of P α ( G ) is very appealing in quantum information theory, it is interesting to study the quantity P α ( G ) and explore some properties like the bounds, the dependence on the graph topology G and the dependence on the parameter α . In this paper, we establish some bounds for the generalized distance Gaussian Estrada index P α ( G ) of a connected graph G, involving the different graph parameters, including the order n, the Wiener index W ( G ) , the transmission degrees and the parameter α ∈ [ 0 , 1 ] , and characterize the extremal graphs attaining these bounds.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Jianping Ou ◽  
Xing Feng ◽  
Saihua Liu

The Wiener polarity index of a connected graphGis defined as the number of its pairs of vertices that are at distance three. By introducing some graph transformations, in different way with that of Huang et al., 2013, we determine the minimum Wiener polarity index of unicyclic graphs with any given maximum degree and girth, and characterize extremal graphs. These observations lead to the determination of the minimum Wiener polarity index of unicyclic graphs and the characterization of the extremal graphs.


2020 ◽  
Vol 12 (04) ◽  
pp. 2050054
Author(s):  
Peter Luo ◽  
Cun-Quan Zhang ◽  
Xiao-Dong Zhang

The Wiener index of a connected graph is the sum of the distance of all pairs of distinct vertices. It was introduced by Wiener in 1947 to analyze some aspects of branching by fitting experimental data for several properties of alkane compounds. Denote by [Formula: see text] the set of unicyclic graphs with [Formula: see text] vertices and [Formula: see text] vertices of even degree. In this paper, we present a structural result on the graphs in [Formula: see text] with minimum Wiener index and completely characterize such graphs when [Formula: see text].


2016 ◽  
Vol 08 (03) ◽  
pp. 1650040 ◽  
Author(s):  
Shaohui Wang ◽  
Bing Wei

Let [Formula: see text] be multiplicative Zagreb index of a graph [Formula: see text]. A connected graph is a cactus graph if and only if any two of its cycles have at most one vertex in common, which is a generalization of trees and has been the interest of researchers in the field of material chemistry and graph theory. In this paper, we use a new tool to obtain the upper and lower bounds of [Formula: see text] for all cactus graphs and characterize the corresponding extremal graphs.


2016 ◽  
Vol 47 (2) ◽  
pp. 163-178
Author(s):  
Mahdieh Azari ◽  
Ali Iranmanesh

The vertex-edge Wiener index of a simple connected graph $G$ is defined as the sum of distances between vertices and edges of $G$. The vertex-edge Wiener polynomial of $G$ is a generating function whose first derivative is a $q-$analog of the vertex-edge Wiener index. Two possible distances $D_1(u, e|G)$ and $D_2(u, e|G)$ between a vertex $u$ and an edge $e$ of $G$ can be considered and corresponding to them, the first and second vertex-edge Wiener indices of $G$, and the first and second vertex-edge Wiener polynomials of $G$ are introduced. In this paper, we study the behavior of these indices and polynomials under the join and corona product of graphs. Results are applied for some classes of graphs such as suspensions, bottlenecks, and thorny graphs.


2021 ◽  
Vol vol. 23, no. 3 (Graph Theory) ◽  
Author(s):  
Stijn Cambie

In this paper, we prove a collection of results on graphical indices. We determine the extremal graphs attaining the maximal generalized Wiener index (e.g. the hyper-Wiener index) among all graphs with given matching number or independence number. This generalizes some work of Dankelmann, as well as some work of Chung. We also show alternative proofs for two recents results on maximizing the Wiener index and external Wiener index by deriving it from earlier results. We end with proving two conjectures. We prove that the maximum for the difference of the Wiener index and the eccentricity is attained by the path if the order $n$ is at least $9$ and that the maximum weighted Szeged index of graphs of given order is attained by the balanced complete bipartite graphs.


Sign in / Sign up

Export Citation Format

Share Document