scholarly journals Computing the (k-)monopoly number of direct product of graphs

Filomat ◽  
2015 ◽  
Vol 29 (5) ◽  
pp. 1163-1171
Author(s):  
Dorota Kuziak ◽  
Iztok Peterin ◽  
Ismael Yero

Let G = (V,E) be a simple graph without isolated vertices and minimum degree ?(G), and let k ? {1-??(G)/2? ,..., ?(G)/2c?} be an integer. Given a set M ? V, a vertex v of G is said to be k-controlled by M if ?M(v)? ?(v)/2 + k where ?M(v) represents the quantity of neighbors v has in M and ?(v) the degree of v. The set M is called a k-monopoly if it k-controls every vertex v of G. The minimum cardinality of any k-monopoly is the k-monopoly number of G. In this article we study the k-monopoly number of direct product graphs. Specifically we obtain tight lower and upper bounds for the k-monopoly number of direct product graphs in terms of the k-monopoly numbers of its factors. Moreover, we compute the exact value for the k-monopoly number of several families of direct product graphs.

Filomat ◽  
2016 ◽  
Vol 30 (8) ◽  
pp. 2111-2120 ◽  
Author(s):  
Kinkar Das ◽  
Kexiang Xu ◽  
Jinlan Wang

Let G=(V,E) be a simple graph of order n and size m with maximum degree ? and minimum degree ?. The inverse degree of a graph G with no isolated vertices is defined as ID(G) = ?n,i=1 1/di, where di is the degree of the vertex vi?V(G). In this paper, we obtain several lower and upper bounds on ID(G) of graph G and characterize graphs for which these bounds are best possible. Moreover, we compare inverse degree ID(G) with topological indices (GA1-index, ABC-index, Kf-index) of graphs.


2021 ◽  
Vol 6 (10) ◽  
pp. 11084-11096
Author(s):  
Abel Cabrera Martínez ◽  
◽  
Iztok Peterin ◽  
Ismael G. Yero ◽  
◽  
...  

<abstract><p>Let $ G $ be a graph with vertex set $ V(G) $. A function $ f:V(G)\rightarrow \{0, 1, 2\} $ is a Roman dominating function on $ G $ if every vertex $ v\in V(G) $ for which $ f(v) = 0 $ is adjacent to at least one vertex $ u\in V(G) $ such that $ f(u) = 2 $. The Roman domination number of $ G $ is the minimum weight $ \omega(f) = \sum_{x\in V(G)}f(x) $ among all Roman dominating functions $ f $ on $ G $. In this article we study the Roman domination number of direct product graphs and rooted product graphs. Specifically, we give several tight lower and upper bounds for the Roman domination number of direct product graphs involving some parameters of the factors, which include the domination, (total) Roman domination, and packing numbers among others. On the other hand, we prove that the Roman domination number of rooted product graphs can attain only three possible values, which depend on the order, the domination number, and the Roman domination number of the factors in the product. In addition, theoretical characterizations of the classes of rooted product graphs achieving each of these three possible values are given.</p></abstract>


Author(s):  
Amitav Doley ◽  
Jibonjyoti Buragohain ◽  
A. Bharali

The inverse sum indeg (ISI) index of a graph G is defined as the sum of the weights dG(u)dG(v)/dG(u)+dG(v) of all edges uv in G, where dG(u) is the degree of the vertex u in G. This index is found to be a significant predictor of total surface area of octane isomers. In this chapter, the authors present some lower and upper bounds for ISI index of subdivision graphs, t-subdivision graphs, s-sum and st -sum of graphs in terms of some graph parameters such as order, size, maximum degree, minimum degree, and the first Zagreb index. The extremal graphs are also characterized for their sharpness.


2010 ◽  
Vol 02 (02) ◽  
pp. 143-150
Author(s):  
CHUNXIANG WANG

The super edge-connectivity λ′ of a connected graph G is the minimum cardinality of an edge-cut F in G such that every component of G–F contains at least two vertices. Let two connected graphs Gm and Gp have m and p vertices, minimum degree δ(Gm) and δ(Gp), edge-connectivity λ(Gm) and λ(Gp), respectively. This paper shows that min {pλ(Gm), λ(Gp) + δ(Gm), δ(Gm)(λ(Gp) + 1), (δ(Gm) + 1)λ(Gp)} ≤ λ(Gm * Gp) ≤ δ(Gm) + δ(Gp), where the product graph Gm * Gp of two given graphs Gm and Gp, defined by J. C. Bermond et al. [J. Combin. Theory B36 (1984) 32–48] in the context of the so-called (△, D)-problem, is one interesting model in the design of large reliable networks. Moreover, this paper determines λ′(Gm * Gp) ≤ min {pδ(Gm), ξ(Gp) + 2δ(Gm)} and λ′(G1 ⊕ G2) ≥ min {n, λ1 + λ2} if δ1 = δ2.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Zaryab Hussain ◽  
Ghulam Murtaza ◽  
Toqeer Mahmood ◽  
Jia-Bao Liu

Let G = G 1 × G 2 × ⋯ × G m be the strong product of simple, finite connected graphs, and let ϕ : ℕ ⟶ 0 , ∞ be an increasing function. We consider the action of generalized maximal operator M G ϕ on ℓ p spaces. We determine the exact value of ℓ p -quasi-norm of M G ϕ for the case when G is strong product of complete graphs, where 0 < p ≤ 1 . However, lower and upper bounds of ℓ p -norm have been determined when 1 < p < ∞ . Finally, we computed the lower and upper bounds of M G ϕ p when G is strong product of arbitrary graphs, where 0 < p ≤ 1 .


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Ali Ghalavand ◽  
Ali Reza Ashrafi ◽  
Marzieh Pourbabaee

Suppose G is a simple graph with edge set E G . The Randić index R G is defined as R G = ∑ u v ∈ E G 1 / deg G u deg G v , where deg G u and deg G v denote the vertex degrees of u and v in G , respectively. In this paper, the first and second maximum of Randić index among all n − vertex c − cyclic graphs was computed. As a consequence, it is proved that the Randić index attains its maximum and second maximum on two classes of chemical graphs. Finally, we will present new lower and upper bounds for the Randić index of connected chemical graphs.


Author(s):  
Saeid Alikhani ◽  
Nasrin Jafari

Let $G = (V, E)$ be a simple graph of order $n$. A  total dominating set of $G$ is a subset $D$ of $V$, such that every vertex of $V$ is adjacent to at least one vertex in  $D$. The total domination number of $G$ is  minimum cardinality of  total dominating set in $G$ and is denoted by $\gamma_t(G)$. The total domination polynomial of $G$ is the polynomial $D_t(G,x)=\sum_{i=\gamma_t(G)}^n d_t(G,i)$, where $d_t(G,i)$ is the number of total dominating sets of $G$ of size $i$. In this paper, we study roots of the total domination polynomial of some graphs.  We show that  all roots of $D_t(G, x)$ lie in the circle with center $(-1, 0)$ and radius $\sqrt[\delta]{2^n-1}$, where $\delta$ is the minimum degree of $G$. As a consequence, we prove that if $\delta\geq \frac{2n}{3}$,  then every integer root of $D_t(G, x)$ lies in the set $\{-3,-2,-1,0\}$.


2017 ◽  
Vol 17 (02) ◽  
pp. 1750007 ◽  
Author(s):  
ZHAO WANG ◽  
YAPING MAO ◽  
CHENGFU YE ◽  
HAIXING ZHAO

The super edge-connectivity [Formula: see text] of a connected graph G is the minimum cardinality of an edge-cut F in G such that every component of G − F contains at least two vertices. Denote by [Formula: see text] the strong product of graphs G and H. For two graphs G and H, Yang proved that [Formula: see text]. In this paper, we give another proof of this result. In particular, we determine [Formula: see text] if [Formula: see text] and [Formula: see text], where [Formula: see text] denotes the minimum edge-degree of a graph G.


2011 ◽  
Vol 2011 ◽  
pp. 1-7
Author(s):  
Ismael G. Yero ◽  
Juan A. Rodríguez-Velázquez

Let G be a graph with vertex set V=(v1,v2,…,vn). Let δ(vi) be the degree of the vertex vi∈V. If the vertices vi1,vi2,…,vih+1 form a path of length h≥1 in the graph G, then the hth order Randić index Rh of G is defined as the sum of the terms 1/δ(vi1)δ(vi2)⋯δ(vih+1) over all paths of length h contained (as subgraphs) in G. Lower and upper bounds for Rh, in terms of the vertex degree sequence of its factors, are obtained for corona product graphs. Moreover, closed formulas are obtained when the factors are regular graphs.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Jia-Bao Liu ◽  
Xiang-Feng Pan ◽  
Jinde Cao

LetGbe a simple graph withnvertices and letλ1,λ2,…,λnbe the eigenvalues of its adjacency matrix; the Estrada indexEEGof the graphGis defined as the sum of the termseλi,  i=1,2,…,n. Then-dimensional folded hypercube networksFQnare an important and attractive variant of then-dimensional hypercube networksQn, which are obtained fromQnby adding an edge between any pair of vertices complementary edges. In this paper, we establish the explicit formulae for calculating the Estrada index of the folded hypercubes networksFQnby deducing the characteristic polynomial of the adjacency matrix in spectral graph theory. Moreover, some lower and upper bounds for the Estrada index of the folded hypercubes networksFQnare proposed.


Sign in / Sign up

Export Citation Format

Share Document