scholarly journals Existence and multiplicity of solutions for nonlinear elliptic equations of p-Laplace type in RN

Filomat ◽  
2016 ◽  
Vol 30 (7) ◽  
pp. 2029-2043 ◽  
Author(s):  
Ji Lee ◽  
Yun-Ho Kim

In this paper, we discuss the following elliptic equation: -div(?(x,?u)) = ?f (x,u) in RN, where the function ? : RN x RN ? RN is of type |v|p-2 v with a real constant p > 1 and f : RN x R ? R satisfies a Carath?odory condition.

2012 ◽  
Vol 12 (4) ◽  
Author(s):  
Jaeyoung Byeon ◽  
Kazunaga Tanaka

AbstractWe study the existence of a positive solution of a nonlinear elliptic equationwhere k ≥ 2 and D is a bounded domain domain in R


2010 ◽  
Vol 08 (02) ◽  
pp. 185-197 ◽  
Author(s):  
F. J. S. A. CORRÊA ◽  
J. V. GONCALVES ◽  
ANGELO RONCALLI

We employ arguments involving continua of fixed points of suitable nonlinear compact operators and the Lyapunov–Schmidt method to prove existence and multiplicity of solutions in a class of fourth order non-homogeneous resonant elliptic problems. Our main result extends even similar ones known for the Laplacian.


2006 ◽  
Vol 136 (5) ◽  
pp. 1041-1051 ◽  
Author(s):  
Yao Tian Shen ◽  
Yang Xin Yao

We give a positive answer to an open problem about Hardy's inequality raised by Brézis and Vázquez, and another result obtained improves that of Vázquez and Zuazua. Furthermore, by this improved inequality and the critical-point theory, in a k-order Sobolev–Hardy space, we obtain the existence of multi-solution to a nonlinear elliptic equation with critical potential and critical parameter.


2001 ◽  
Vol 44 (3) ◽  
pp. 631-660 ◽  
Author(s):  
Juncheng Wei

AbstractWe consider the following nonlinear elliptic equations\begin{gather*} \begin{cases} \Delta u+u_{+}^{N/(N-2)}=0\amp\quad\text{in }\sOm, \\ u=\mu\amp\quad\text{on }\partial\sOm\quad(\mu\text{ is an unknown constant}), \\ \dsty\int_{\partial\sOm}\biggl(-\dsty\frac{\partial u}{\partial n}\biggr)=M, \end{cases} \end{gather*}where $u_{+}=\max(u,0)$, $M$ is a prescribed constant, and $\sOm$ is a bounded and smooth domain in $R^N$, $N\geq3$. It is known that for $M=M_{*}^{(N)}$, $\sOm=B_R(0)$, the above problem has a continuum of solutions. The case when $M>M_{*}^{(N)}$ is referred to as supercritical in the literature. We show that for $M$ near $KM_{*}^{(N)}$, $K>1$, there exist solutions with multiple condensations in $\sOm$. These concentration points are non-degenerate critical points of a function related to the Green's function.AMS 2000 Mathematics subject classification: Primary 35B40; 35B45. Secondary 35J40


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Duan Wu ◽  
Pengcheng Niu

AbstractThe aim of this paper is to study the oscillation of solutions of the nonlinear degenerate elliptic equation in the Heisenberg group $H^{n}$ H n . We first derive a critical inequality in $H^{n}$ H n . Based on it, we establish a Picone-type differential inequality and a Sturm-type comparison principle. Then we obtain an oscillation theorem. Our result generalizes the related conclusions for the nonlinear elliptic equations in $R^{n}$ R n .


2006 ◽  
Vol 6 (1) ◽  
Author(s):  
Shenghua Weng ◽  
Yongqing Li

AbstractThis paper deals with a class of nonlinear elliptic Dirichlet boundary value problems where the combined effects of a sublinear and a superlinear term allow us to establish some existence and multiplicity results.


2005 ◽  
Vol 07 (06) ◽  
pp. 867-904 ◽  
Author(s):  
VERONICA FELLI ◽  
SUSANNA TERRACINI

We prove the existence of fountain-like solutions, obtained by superposition of bubbles of different blow-up orders, for a nonlinear elliptic equation with critical growth and Hardy-type potential.


Sign in / Sign up

Export Citation Format

Share Document