scholarly journals Chebyshev Type Inequalities for the Riemann-Liouville Variable-Order Fractional Integral Operator

Author(s):  
Dagnachew Jenber ◽  
Mollalign Haile ◽  
Adamu Gizachew

This paper presents Chebyshev Type inequalities for the Riemann-Liouville variable-order fractional integral operator using two synchronous functions on the set of real numbers. It is the first result of its kind in the current literature using variable-order Riemann-Liouville fractional integral operator. Some special cases for the result obtained in the paper are discussed.

Filomat ◽  
2016 ◽  
Vol 30 (7) ◽  
pp. 1931-1939 ◽  
Author(s):  
Junesang Choi ◽  
Praveen Agarwal

Recently Kiryakova and several other ones have investigated so-called multiindex Mittag-Leffler functions associated with fractional calculus. Here, in this paper, we aim at establishing a new fractional integration formula (of pathway type) involving the generalized multiindex Mittag-Leffler function E?,k[(?j,?j)m;z]. Some interesting special cases of our main result are also considered and shown to be connected with certain known ones.


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1753
Author(s):  
Saima Rashid ◽  
Aasma Khalid ◽  
Omar Bazighifan ◽  
Georgia Irina Oros

Integral inequalities for ℘-convex functions are established by using a generalised fractional integral operator based on Raina’s function. Hermite–Hadamard type inequality is presented for ℘-convex functions via generalised fractional integral operator. A novel parameterized auxiliary identity involving generalised fractional integral is proposed for differentiable mappings. By using auxiliary identity, we derive several Ostrowski type inequalities for functions whose absolute values are ℘-convex mappings. It is presented that the obtained outcomes exhibit classical convex and harmonically convex functions which have been verified using Riemann–Liouville fractional integral. Several generalisations and special cases are carried out to verify the robustness and efficiency of the suggested scheme in matrices and Fox–Wright generalised hypergeometric functions.


2021 ◽  
Vol 7 (3) ◽  
pp. 3418-3439
Author(s):  
Jamshed Nasir ◽  
◽  
Shahid Qaisar ◽  
Saad Ihsan Butt ◽  
Hassen Aydi ◽  
...  

<abstract><p>Since the supposed Hermite-Hadamard inequality for a convex function was discussed, its expansions, refinements, and variations, which are called Hermite-Hadamard type inequalities, have been widely explored. The main objective of this article is to acquire new Hermite-Hadamard type inequalities employing the Riemann-Liouville fractional operator for functions whose third derivatives of absolute values are convex and quasi-convex in nature. Some special cases of the newly presented results are discussed as well. As applications, several estimates concerning Bessel functions and special means of real numbers are illustrated.</p></abstract>


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Xiaobin Wang ◽  
Muhammad Shoaib Saleem ◽  
Kiran Naseem Aslam ◽  
Xingxing Wu ◽  
Tong Zhou

The theory of convex functions plays an important role in engineering and applied mathematics. The Caputo–Fabrizio fractional derivatives are one of the important notions of fractional calculus. The aim of this paper is to present some properties of Caputo–Fabrizio fractional integral operator in the setting of h -convex function. We present some new Caputo–Fabrizio fractional estimates from Hermite–Hadamard-type inequalities. The results of this paper can be considered as the generalization and extension of many existing results of inequalities and convex functions. Moreover, we also present some application of our results to special means of real numbers.


Author(s):  
Shin Min Kang ◽  
Ghulam Abbas ◽  
Ghulam Farid ◽  
Waqas Nazeer

In the present research, we will develop some integral inequalities of Hermite Hadamard type for differentiable &eta;-convex function. Moreover, our results include several new and known results as special cases.


Filomat ◽  
2018 ◽  
Vol 32 (16) ◽  
pp. 5595-5609
Author(s):  
Erhan Set

Remarkably a lot of Ostrowski type inequalities involving various fractional integral operators have been investigated by many authors. Recently, Raina [34] introduced a new generalization of the Riemann-Liouville fractional integral operator involving a class of functions defined formally by F? ?,?(x)=??,k=0 ?(k)/?(?k + ?)xk. Using this fractional integral operator, in the present note, we establish some new fractional integral inequalities of Ostrowski type whose special cases are shown to yield corresponding inequalities associated with Riemann-Liouville fractional integral operators.


Author(s):  
Saima Rashid ◽  
Farhat Safdar ◽  
Ahmet Ocak Akdemir ◽  
Muhammad Aslam Noor ◽  
Khalida Inayat Noor

AbstractIn the article, we establish some new general fractional integral inequalities for exponentially m-convex functions involving an extended Mittag-Leffler function, provide several kinds of fractional integral operator inequalities and give certain special cases for our obtained results.


Motivated by the triumph of the applications of Mittag-Leffler functions in various fields of engineering sciences, we present the effect ofg Kober operator and extended Kober operator of first kind on the Mittag-Leffler function with three parameters (z). An effort has been made to investigate the properties of (z) due to application of Kober fractional integral operator of the first kind of order We also provide certain results pertaining to the special cases of in the extended Kober operator of first kind.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Tariq A. Aljaaidi ◽  
Deepak B. Pachpatte ◽  
Wasfi Shatanawi ◽  
Mohammed S. Abdo ◽  
Kamaleldin Abodayeh

AbstractIn this research paper, we improve some fractional integral inequalities of Minkowski-type. Precisely, we use a proportional fractional integral operator with respect to another strictly increasing continuous function ψ. The functions used in this work are bounded by two positive functions to get reverse Minkowski inequalities in a new sense. Moreover, we introduce new fractional integral inequalities which have a close relationship to the reverse Minkowski-type inequalities via ψ-proportional fractional integral, then with the help of this fractional integral operator, we discuss some new special cases of reverse Minkowski-type inequalities through this work. An open issue is covered in the conclusion section to extend the current findings to be more general.


Sign in / Sign up

Export Citation Format

Share Document