scholarly journals An extension of the generalized Hurwitz-Lerch Zeta function of two variables

Filomat ◽  
2017 ◽  
Vol 31 (1) ◽  
pp. 91-96 ◽  
Author(s):  
Junesang Choi ◽  
Rakesh Parmar

The main object of this paper is to introduce a new extension of the generalized Hurwitz-Lerch Zeta functions of two variables. We then systematically investigate such its several interesting properties and related formulas as (for example) various integral representations, which provide certain new and known extensions of earlier corresponding results, a summation formula and Mellin-Barnes type contour integral representations. We also consider some important special cases.

Mathematics ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 48
Author(s):  
Kottakkaran Sooppy Nisar

The main aim of this paper is to provide a new generalization of Hurwitz-Lerch Zeta function of two variables. We also investigate several interesting properties such as integral representations, summation formula, and a connection with the generalized hypergeometric function. To strengthen the main results we also consider some important special cases.


Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1431
Author(s):  
Junesang Choi ◽  
Recep Şahin ◽  
Oğuz Yağcı ◽  
Dojin Kim

A number of generalized Hurwitz–Lerch zeta functions have been presented and investigated. In this study, by choosing a known extended Hurwitz–Lerch zeta function of two variables, which has been very recently presented, in a systematic way, we propose to establish certain formulas and representations for this extended Hurwitz–Lerch zeta function such as integral representations, generating functions, derivative formulas and recurrence relations. We also point out that the results presented here can be reduced to yield corresponding results for several less generalized Hurwitz–Lerch zeta functions than the extended Hurwitz–Lerch zeta function considered here. For further investigation, among possibly various more generalized Hurwitz–Lerch zeta functions than the one considered here, two more generalized settings are provided.


Author(s):  
Gauhar Rahman ◽  
KS Nisar ◽  
Shahid Mubeen

In this paper, we define a (p,v)-extension of Hurwitz-Lerch Zeta function by considering an extension of beta function defined by Parmar et al. [J. Classical Anal. 11 (2017) 81–106]. We obtain its basic properties which include integral representations, Mellin transformation, derivative formulas and certain generating relations. Also, we establish the special cases of the main results.


Author(s):  
Rakesh K. Parmar ◽  
R. K. Raina

AbstractOur purpose in this paper is to consider a generalized form of the extended Hurwitz-Lerch Zeta function. For this extended Hurwitz-Lerch Zeta function, we obtain some classical properties which includes various integral representations, a differential formula, Mellin transforms and certain generating relations. We further consider an application to probability distributions and also point out some important special cases of the main results.


Author(s):  
M. A. Pathan ◽  
Maged G. Bin-Saad ◽  
J. A. Younis

The main objective of this work is to introduce a new generalization of Hurwitz-Lerch zeta function of two variables. Also, we investigate several interesting properties such as integral representations, operational connections and summation formulas.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 100
Author(s):  
Robert Reynolds ◽  
Allan Stauffer

The aim of the current document is to evaluate a quadruple integral involving the Chebyshev polynomial of the first kind Tn(x) and derive in terms of the Hurwitz-Lerch zeta function. Special cases are evaluated in terms of fundamental constants. The zero distribution of almost all Hurwitz-Lerch zeta functions is asymmetrical. All the results in this work are new.


Author(s):  
TAKASHI NAKAMURA

AbstractLet 0 < a ⩽ 1, s, z ∈ ${\mathbb{C}}$ and 0 < |z| ⩽ 1. Then the Hurwitz–Lerch zeta function is defined by Φ(s, a, z) ≔ ∑∞n = 0zn(n + a)− s when σ ≔ ℜ(s) > 1. In this paper, we show that the Hurwitz zeta function ζ(σ, a) ≔ Φ(σ, a, 1) does not vanish for all 0 < σ < 1 if and only if a ⩾ 1/2. Moreover, we prove that Φ(σ, a, z) ≠ 0 for all 0 < σ < 1 and 0 < a ⩽ 1 when z ≠ 1. Real zeros of Hurwitz–Lerch type of Euler–Zagier double zeta functions are studied as well.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
H. M. Srivastava ◽  
Sébastien Gaboury ◽  
Richard Tremblay

We derive several new expansion formulas involving an extended multiparameter Hurwitz-Lerch zeta function introduced and studied recently by Srivastava et al. (2011). These expansions are obtained by using some fractional calculus methods such as the generalized Leibniz rules, the Taylor-like expansions in terms of different functions, and the generalized chain rule. Several (known or new) special cases are also given.


Filomat ◽  
2017 ◽  
Vol 31 (8) ◽  
pp. 2219-2229 ◽  
Author(s):  
Min-Jie Luo ◽  
R.K. Raina

In view of the relationship with the Kr?tzel function, we derive a new series representation for the ?-generalized Hurwitz-Lerch Zeta function introduced by H.M. Srivastava [Appl. Math. Inf. Sci. 8 (2014) 1485-1500] and determine the monotonicity of its coeficients. An integral representation of the Mathieu (a;?)-series is rederived by applying the Abel?s summation formula (which provides a slight modification of the result given by Pog?ny [Integral Transforms Spec. Funct. 16 (8) (2005) 685-689]) and this modified form of the result is then used to obtain a new integral representation for Srivastava?s ?-generalized Hurwitz-Lerch Zeta function. Finally, by making use of the various results presented in this paper, we establish two sets of two-sided inequalities for Srivastava?s ?-generalized Hurwitz-Lerch Zeta function.


Author(s):  
Bujar Xh. Fejzullahu

In this paper, we derive a new contour integral representation for the confluent hypergeometric function as well as for its various special cases. Consequently, we derive expansions of the confluent hypergeometric function in terms of functions of the same kind. Furthermore, we obtain a new identity involving integrals and sums of confluent hypergeometric functions. Our results generalized several well-known results in the literature.


Sign in / Sign up

Export Citation Format

Share Document