scholarly journals Generalized Kato linear relations

Filomat ◽  
2017 ◽  
Vol 31 (5) ◽  
pp. 1129-1139 ◽  
Author(s):  
Mohammed Benharrat ◽  
Teresa Álvarez ◽  
Bekkai Messirdi

For a Banach space the notions of generalized Kato linear relation and the corresponding spectrum are introduced and studied. We show that the symmetric difference between the generalized Kato spectrum and the Goldberg spectrum of multivalued linear operators in Banach spaces is at most countable. The obtained results are used to describe the generalized Kato spectrum of the inverse of the left shift operator regarded as a linear relation.

2006 ◽  
Vol 49 (1) ◽  
pp. 39-52 ◽  
Author(s):  
Yun Sung Choi ◽  
Domingo Garcia ◽  
Sung Guen Kim ◽  
Manuel Maestre

AbstractIn this paper, we introduce the polynomial numerical index of order $k$ of a Banach space, generalizing to $k$-homogeneous polynomials the ‘classical’ numerical index defined by Lumer in the 1970s for linear operators. We also prove some results. Let $k$ be a positive integer. We then have the following:(i) $n^{(k)}(C(K))=1$ for every scattered compact space $K$.(ii) The inequality $n^{(k)}(E)\geq k^{k/(1-k)}$ for every complex Banach space $E$ and the constant $k^{k/(1-k)}$ is sharp.(iii) The inequalities$$ n^{(k)}(E)\leq n^{(k-1)}(E)\leq\frac{k^{(k+(1/(k-1)))}}{(k-1)^{k-1}}n^{(k)}(E) $$for every Banach space $E$.(iv) The relation between the polynomial numerical index of $c_0$, $l_1$, $l_{\infty}$ sums of Banach spaces and the infimum of the polynomial numerical indices of them.(v) The relation between the polynomial numerical index of the space $C(K,E)$ and the polynomial numerical index of $E$.(vi) The inequality $n^{(k)}(E^{**})\leq n^{(k)}(E)$ for every Banach space $E$.Finally, some results about the numerical radius of multilinear maps and homogeneous polynomials on $C(K)$ and the disc algebra are given.


2016 ◽  
Vol 160 (3) ◽  
pp. 413-421 ◽  
Author(s):  
TOMASZ KANIA ◽  
NIELS JAKOB LAUSTSEN

AbstractA recent result of Leung (Proceedings of the American Mathematical Society, 2015) states that the Banach algebra ℬ(X) of bounded, linear operators on the Banach space X = (⊕n∈$\mathbb{N}$ ℓ∞n)ℓ1 contains a unique maximal ideal. We show that the same conclusion holds true for the Banach spaces X = (⊕n∈$\mathbb{N}$ ℓ∞n)ℓp and X = (⊕n∈$\mathbb{N}$ ℓ1n)ℓp whenever p ∈ (1, ∞).


1975 ◽  
Vol 12 (1) ◽  
pp. 23-25 ◽  
Author(s):  
Béla Bollobás ◽  
Stephan E. Eldridge

Giles and Joseph (Bull. Austral. Math. Soc. 11 (1974), 31–36), proved that the numerical range of an unbounded operator on a Banach space has a certain density property. They showed, in particular, that the numerical range of an unbounded operator on certain Banach spaces is dense in the scalar field. We prove that the numerical range of an unbounded operator on a Banach space is always dense in the scalar field.


2011 ◽  
Vol 53 (3) ◽  
pp. 443-449 ◽  
Author(s):  
ANTONÍN SLAVÍK

AbstractThis paper is inspired by a counter example of J. Kurzweil published in [5], whose intention was to demonstrate that a certain property of linear operators on finite-dimensional spaces need not be preserved in infinite dimension. We obtain a stronger result, which says that no infinite-dimensional Banach space can have the given property. Along the way, we will also derive an interesting proposition related to Dvoretzky's theorem.


2002 ◽  
Vol 31 (7) ◽  
pp. 421-442 ◽  
Author(s):  
S. Ludkovsky ◽  
B. Diarra

Banach algebras over arbitrary complete non-Archimedean fields are considered such that operators may be nonanalytic. There are different types of Banach spaces over non-Archimedean fields. We have determined the spectrum of some closed commutative subalgebras of the Banach algebraℒ(E)of the continuous linear operators on a free Banach spaceEgenerated by projectors. We investigate the spectral integration of non-Archimedean Banach algebras. We define a spectral measure and prove several properties. We prove the non-Archimedean analog of Stone theorem. It also contains the case ofC-algebrasC∞(X,𝕂). We prove a particular case of a representation of aC-algebra with the help of aL(Aˆ,μ,𝕂)-projection-valued measure. We consider spectral theorems for operators and families of commuting linear continuous operators on the non-Archimedean Banach space.


1989 ◽  
Vol 32 (4) ◽  
pp. 450-458
Author(s):  
Takemitsu Kiyosawa

AbstractLet K be a non-trivial complete non-Archimedean valued field and let E be an infinite-dimensional Banach space over K. Some of the main results are:(1) K is spherically complete if and only if every weakly convergent sequence in l∞ is norm-convergent.(2) If the valuation of K is dense, then C0 is complemented in E if and only if C(E,c0) is n o t complemented in L(E,c0), where L(E,c0) is the space of all continuous linear operators from E to c0 and C(E,c0) is the subspace of L(E, c0) consisting of all compact linear operators.


Filomat ◽  
2017 ◽  
Vol 31 (2) ◽  
pp. 255-271 ◽  
Author(s):  
T. Álvarez ◽  
Fatma Fakhfakh ◽  
Maher Mnif

In this paper we introduce the notions of left (resp. right) Fredholm and left (resp. right) Browder linear relations. We construct a Kato-type decomposition of such linear relations. The results are then applied to give another decomposition of a left (resp. right) Browder linear relation T in a Banach space as an operator-like sum T = A + B, where A is an injective left (resp. a surjective right) Fredholm linear relation and B is a bounded finite rank operator with certain properties of commutativity. The converse results remain valid with certain conditions of commutativity. As a consequence, we infer the characterization of left (resp. right) Browder spectrum under finite rank operator.


Author(s):  
FENG WEI ◽  
YUHAO ZHANG

Abstract Let $\mathcal {X}$ be a Banach space over the complex field $\mathbb {C}$ and $\mathcal {B(X)}$ be the algebra of all bounded linear operators on $\mathcal {X}$ . Let $\mathcal {N}$ be a nontrivial nest on $\mathcal {X}$ , $\text {Alg}\mathcal {N}$ be the nest algebra associated with $\mathcal {N}$ , and $L\colon \text {Alg}\mathcal {N}\longrightarrow \mathcal {B(X)}$ be a linear mapping. Suppose that $p_n(x_1,x_2,\ldots ,x_n)$ is an $(n-1)\,$ th commutator defined by n indeterminates $x_1, x_2, \ldots , x_n$ . It is shown that L satisfies the rule $$ \begin{align*}L(p_n(A_1, A_2, \ldots, A_n))=\sum_{k=1}^{n}p_n(A_1, \ldots, A_{k-1}, L(A_k), A_{k+1}, \ldots, A_n) \end{align*} $$ for all $A_1, A_2, \ldots , A_n\in \text {Alg}\mathcal {N}$ if and only if there exist a linear derivation $D\colon \text {Alg}\mathcal {N}\longrightarrow \mathcal {B(X)}$ and a linear mapping $H\colon \text {Alg}\mathcal {N}\longrightarrow \mathbb {C}I$ vanishing on each $(n-1)\,$ th commutator $p_n(A_1,A_2,\ldots , A_n)$ for all $A_1, A_2, \ldots , A_n\in \text {Alg}\mathcal {N}$ such that $L(A)=D(A)+H(A)$ for all $A\in \text {Alg}\mathcal {N}$ . We also propose some related topics for future research.


1981 ◽  
Vol 89 (1) ◽  
pp. 129-133 ◽  
Author(s):  
N. D. Hooker

In 1973, V.I.Lomonosov introduced a new technique for finding invariant and hyperinvariant subspaces for certain classes of (continuous, linear) operators on complex Banach spaces. Recall that a closed subspace M of the Banach space X is called hyperinvariant for the operator T if S(M) ⊂ M for every operator S which commutes with T.


Author(s):  
Mingze Yang

Using ideas of Pisier, the concept of complete positivity is generalized in a different direction in this paper, where the Hilbert spaceℋis replaced with a Banach space and its conjugate linear dual. The extreme point results of Arveson are reformulated in this more general setting.


Sign in / Sign up

Export Citation Format

Share Document