scholarly journals An impulsive delay discrete stochastic neural network fractional-order model and applications in finance

Filomat ◽  
2018 ◽  
Vol 32 (18) ◽  
pp. 6339-6352
Author(s):  
Martin Bohner ◽  
Ivanka Stamova

In this paper, we propose a new tool for modeling and analysis in finance, introducing an impulsive discrete stochastic neural network (NN) fractional-order model. The main advantages of the proposed approach are: (i) Using NNs which can be trained without the restriction of a model to derive parameters and discover relationships, driven and shaped solely by the nature of the data; (ii) using fractional-order differences, whose nonlocal property makes the fractional calculus a suitable tool for modeling actual financial systems; (iii) using impulsive perturbations, which give an opportunity to control the dynamic behavior of the model; (iv) including a stochastic term, which allows to study the effect of noise disturbances generally existing in financial assets; (v) taking into account the existence of time delayed influences. The modeling approach proposed in this paper can be applied to investigate macroeconomic systems.

2021 ◽  
Vol 146 ◽  
pp. 110859
Author(s):  
Ahmed Boudaoui ◽  
Yacine El hadj Moussa ◽  
Zakia Hammouch ◽  
Saif Ullah

2017 ◽  
Vol 6 (2) ◽  
Author(s):  
Karthikeyan Rajagopal ◽  
Anitha Karthikeyan ◽  
Prakash Duraisamy

AbstractIn this paper we investigate the control of three-dimensional non-autonomous fractional-order uncertain model of a permanent magnet synchronous generator (PMSG) via a adaptive control technique. We derive a dimensionless fractional order model of the PMSM from the integer order presented in the literatures. Various dynamic properties of the fractional order model like eigen values, Lyapunov exponents, bifurcation and bicoherence are investigated. The system chaotic behavior for various orders of fractional calculus are presented. An adaptive controller is derived to suppress the chaotic oscillations of the fractional order model. As the direct Lyapunov stability analysis of the robust controller is difficult for a fractional order first derivative, we have derived a new lemma to analyze the stability of the system. Numerical simulations of the proposed chaos suppression methodology are given to prove the analytical results derived through which we show that for the derived adaptive controller and the parameter update law, the origin of the system for any bounded initial conditions is asymptotically stable.


2017 ◽  
Vol 42 (2) ◽  
pp. 1499-1509 ◽  
Author(s):  
Miassa Amira Taleb ◽  
Olivier Béthoux ◽  
Emmanuel Godoy

2015 ◽  
Vol 262 ◽  
pp. 36-45 ◽  
Author(s):  
Yongjin Cho ◽  
Imbunm Kim ◽  
Dongwoo Sheen

Sign in / Sign up

Export Citation Format

Share Document