scholarly journals Iterations for systems of variational inequalities, fixed points of pseudocontractions and zeros of accretive operators

Filomat ◽  
2019 ◽  
Vol 33 (15) ◽  
pp. 4769-4784
Author(s):  
Lu-Chuan Ceng ◽  
Jen-Chih Yao ◽  
Yonghong Yao

In this paper, we introduce implicit composite three-step Mann iterations for finding a common solution of a general system of variational inequalities, a fixed point problem of a countable family of pseudocontractive mappings and a zero problem of an accretive operator in Banach spaces. Strong convergence of the suggested iterations are given.

Mathematics ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 187
Author(s):  
Lu-Chuan Ceng ◽  
Qing Yuan

In this paper, we introduce a multiple hybrid implicit iteration method for finding a solution for a monotone variational inequality with a variational inequality constraint over the common solution set of a general system of variational inequalities, and a common fixed point problem of a countable family of uniformly Lipschitzian pseudocontractive mappings and an asymptotically nonexpansive mapping in Hilbert spaces. Strong convergence of the proposed method to the unique solution of the problem is established under some suitable assumptions.


Mathematics ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 338 ◽  
Author(s):  
Lu-Chuan Ceng ◽  
Qing Yuan

In this work, we concern ourselves with the problem of solving a general system of variational inequalities whose solutions also solve a common fixed-point problem of a family of countably many nonlinear operators via a hybrid viscosity implicit iteration method in 2 uniformly smooth and uniformly convex Banach spaces. An application to common fixed-point problems of asymptotically nonexpansive and pseudocontractive mappings and variational inequality problems for strict pseudocontractive mappings is also given in Banach spaces.


Filomat ◽  
2020 ◽  
Vol 34 (9) ◽  
pp. 2939-2951
Author(s):  
Lu-Chuan Ceng ◽  
Qing Yuan

In this paper, let X be a uniformly convex and q-uniformly smooth Banach space with 1 < q ? 2. We introduce and study modified implicit extragradient iterations for treating a common solution of a common fixed-point problem of a countable family of nonexpansive mappings, a general system of variational inequalities, and a variational inclusion in X.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Long He ◽  
Yun-Ling Cui ◽  
Lu-Chuan Ceng ◽  
Tu-Yan Zhao ◽  
Dan-Qiong Wang ◽  
...  

AbstractIn a real Hilbert space, let GSVI and CFPP represent a general system of variational inequalities and a common fixed point problem of a countable family of nonexpansive mappings and an asymptotically nonexpansive mapping, respectively. In this paper, via a new subgradient extragradient implicit rule, we introduce and analyze two iterative algorithms for solving the monotone bilevel equilibrium problem (MBEP) with the GSVI and CFPP constraints, i.e., a strongly monotone equilibrium problem over the common solution set of another monotone equilibrium problem, the GSVI and the CFPP. Some strong convergence results for the proposed algorithms are established under the mild assumptions, and they are also applied for finding a common solution of the GSVI, VIP, and FPP, where the VIP and FPP stand for a variational inequality problem and a fixed point problem, respectively.


Mathematics ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 1189 ◽  
Author(s):  
Yonghong Yao ◽  
Mihai Postolache ◽  
Jen-Chih Yao

In this paper, we are interested in the pseudomonotone variational inequalities and fixed point problem of pseudocontractive operators in Hilbert spaces. An iterative algorithm has been constructed for finding a common solution of the pseudomonotone variational inequalities and fixed point of pseudocontractive operators. Strong convergence analysis of the proposed procedure is given. Several related corollaries are included.


Sign in / Sign up

Export Citation Format

Share Document