scholarly journals On radical formula in modules over noncommutative rings

Filomat ◽  
2020 ◽  
Vol 34 (2) ◽  
pp. 443-449
Author(s):  
Ortac Öneş

This paper examines the radical formula in noncommutative case and for this purpose, a generalization of prime submodule is defined. It is proved that there is a direct connection between onesided prime ideals and one-sided prime submodules. Moreover the connections between the intersection of all one-sided prime submodules and strongly nilpotent elements of a module are studied.

2007 ◽  
Vol 06 (02) ◽  
pp. 337-353 ◽  
Author(s):  
MAHMOOD BEHBOODI

Let M be a left R-module. A proper submodule P of M is called classical prime if for all ideals [Formula: see text] and for all submodules N ⊆ M, [Formula: see text] implies that [Formula: see text] or [Formula: see text]. We generalize the Baer–McCoy radical (or classical prime radical) for a module [denoted by cl.rad R(M)] and Baer's lower nilradical for a module [denoted by Nil *(RM)]. For a module RM, cl.rad R(M) is defined to be the intersection of all classical prime submodules of M and Nil *(RM) is defined to be the set of all strongly nilpotent elements of M (defined later). It is shown that, for any projective R-module M, cl.rad R(M) = Nil *(RM) and, for any module M over a left Artinian ring R, cl.rad R(M) = Nil *(RM) = Rad (M) = Jac (R)M. In particular, if R is a commutative Noetherian domain with dim (R) ≤ 1, then for any module M, we have cl.rad R(M) = Nil *(RM). We show that over a left bounded prime left Goldie ring, the study of Baer–McCoy radicals of general modules reduces to that of torsion modules. Moreover, over an FBN prime ring R with dim (R) ≤ 1 (or over a commutative domain R with dim (R) ≤ 1), every semiprime submodule of any module is an intersection of classical prime submodules.


2020 ◽  
Vol 2 (2) ◽  
pp. 183
Author(s):  
Hisyam Ihsan ◽  
Muhammad Abdy ◽  
Samsu Alam B

Penelitian ini merupakan penelitian kajian pustaka yang bertujuan untuk mengkaji sifat-sifat submodul prima dan submodul prima lemah serta hubungan antara keduanya. Kajian dimulai dari definisi submodul prima dan submodul prima lemah, selanjutnya dikaji mengenai sifat-sifat dari keduanya. Pada penelitian ini, semua ring yang diberikan adalah ring komutatif dengan unsur kesatuan dan modul yang diberikan adalah modul uniter. Sebagai hasil dari penelitian ini diperoleh beberapa pernyataan yang ekuivalen, misalkan  suatu -modul ,  submodul sejati di  dan ideal di , maka ketiga pernyataan berikut ekuivalen, (1)  merupakan submodul prima, (2) Setiap submodul tak nol dari   -modul memiliki annihilator yang sama, (3) Untuk setiap submodul  di , subring  di , jika berlaku  maka  atau . Di lain hal, pada submodul prima lemah jika diberikan  suatu -modul,  submodul sejati di , maka pernyataan berikut ekuivalen, yaitu (1) Submodul  merupakan submodul prima lemah, (2) Untuk setiap , jika  maka . Selain itu, didapatkan pula hubungan antara keduanya, yaitu setiap submodul prima merupakan submodul prima lemah.Kata Kunci: Submodul Prima, Submodul Prima Lemah, Ideal Prima. This research is literature study that aims to examine the properties of prime submodules and weakly prime submodules and the relationship between  both of them. The study starts from the definition of prime submodules and weakly prime submodules, then reviewed about the properties both of them. Throughout this paper all rings are commutative with identity and all modules are unitary. As the result of this research, obtained several equivalent statements, let  be a -module,  be a proper submodule of  and  ideal of , then the following three statetments are equivalent, (1)  is a prime submodule, (2) Every nonzero submodule of   -module has the same annihilator, (3) For any submodule  of , subring  of , if  then  or . In other case, for weakly prime submodules, if given  is a unitary -module,  be a proper submodule of , then the following statements are equivalent, (1)  is a weakly prime submodule, (2) For any , if  then . In addition, also found the relationship between both of them, i.e. any prime submodule is weakly prime submodule.Keywords: Prime Submodules, Weakly Prime Submdules, Prime Ideal.


2017 ◽  
Vol 37 (1) ◽  
pp. 153-168
Author(s):  
Hosein Fazaeli Moghimi ◽  
Batool Zarei Jalal Abadi

‎Let $R$ be a commutative ring with identity‎, ‎and $n\geq 1$ an integer‎. ‎A proper submodule $N$ of an $R$-module $M$ is called‎ ‎an $n$-prime submodule if whenever $a_1 \cdots a_{n+1}m\in N$ for some non-units $a_1‎, ‎\ldots‎ , ‎a_{n+1}\in R$ and $m\in M$‎, ‎then $m\in N$ or there are $n$ of the $a_i$'s whose product is in $(N:M)$‎. ‎In this paper‎, ‎we study $n$-prime submodules as a generalization of prime submodules‎. ‎Among other results‎, ‎it is shown that if $M$ is a finitely generated faithful multiplication module over a Dedekind domain $R$‎, ‎then every $n$-prime submodule of $M$ has the form $m_1\cdots m_t M$ for some maximal ideals $m_1,\ldots,m_t$ of $R$ with $1\leq t\leq n$‎.


2014 ◽  
Vol 57 (1) ◽  
pp. 159-165 ◽  
Author(s):  
Kürşat Hakan Oral ◽  
Neslihan Ayşen Özkirişci ◽  
Ünsal Tekir

AbstractIn a multiplication module, prime submodules have the following property: if a prime submodule contains a finite intersection of submodules, then one of the submodules is contained in the prime submodule. In this paper, we generalize this property to infinite intersection of submodules and call such prime submodules strongly prime submodules. A multiplication module in which every prime submodule is strongly prime will be called a strongly 0-dimensional module. It is also an extension of strongly 0-dimensional rings. After this we investigate properties of strongly 0-dimensional modules and give relations of von Neumann regular modules, Q-modules and strongly 0-dimensional modules


2021 ◽  
Vol 10 (11) ◽  
pp. 3479-3489
Author(s):  
K. Al-Zoubi ◽  
M. Al-Azaizeh

Let $G$ be an abelian group with identity $e$. Let $R$ be a $G$-graded commutative ring with identity, $M$ a graded $R$-module and $S\subseteq h(R)$ a multiplicatively closed subset of $R$. In this paper, we introduce the concept of graded $S$-prime submodules of graded modules over graded commutative rings. We investigate some properties of this class of graded submodules and their homogeneous components. Let $N$ be a graded submodule of $M$ such that $(N:_{R}M)\cap S=\emptyset $. We say that $N$ is \textit{a graded }$S$\textit{-prime submodule of }$M$ if there exists $s_{g}\in S$ and whenever $a_{h}m_{i}\in N,$ then either $s_{g}a_{h}\in (N:_{R}M)$ or $s_{g}m_{i}\in N$ for each $a_{h}\in h(R) $ and $m_{i}\in h(M).$


2006 ◽  
Vol 13 (01) ◽  
pp. 41-45 ◽  
Author(s):  
Ünsal Tekir

Let R be a domain. A non-zero R-module M is called a Dedekind module if every submodule N of M such that N ≠ M either is prime or has a prime factorization N=P1P2… PnN*, where P1, P2, … Pn are prime ideals of R and N* is a prime submodule in M. When R is a ring, a non-zero R-module M is called a ZPI module if every submodule N of M such that N ≠ M either is prime or has a prime factorization. The purpose of this paper is to introduce interesting and useful properties of Dedekind and ZPI modules.


2021 ◽  
Vol 110 (124) ◽  
pp. 47-55
Author(s):  
Shatha Alghueiri ◽  
Khaldoun Al-Zoubi

Let G be a group with identity e. Let R be a G-graded commutative ring with identity and M a graded R-module. We introduce the concept of graded Ie-prime submodule as a generalization of a graded prime submodule for I =?g?G Ig a fixed graded ideal of R. We give a number of results concerning this class of graded submodules and their homogeneous components. A proper graded submodule N of M is said to be a graded Ie-prime submodule of M if whenever rg ? h(R) and mh ? h(M) with rgmh ? N ? IeN, then either rg ? (N :R M) or mh ? N.


2009 ◽  
Vol 52 (2) ◽  
pp. 253-259 ◽  
Author(s):  
NASER ZAMANI

AbstractLet R be a commutative ring with non-zero identity and M be a unitary R-module. Let (M) be the set of all submodules of M, and φ: (M) → (M) ∪ {∅} be a function. We say that a proper submodule P of M is a prime submodule relative to φ or φ-prime submodule if a ∈ R and x ∈ M, with ax ∈ P ∖ φ(P) implies that a ∈(P :RM) or x ∈ P. So if we take φ(N) = ∅ for each N ∈ (M), then a φ-prime submodule is exactly a prime submodule. Also if we consider φ(N) = {0} for each submodule N of M, then in this case a φ-prime submodule will be called a weak prime submodule. Some of the properties of this concept will be investigated. Some characterisations of φ-prime submodules will be given, and we show that under some assumptions prime submodules and φ1-prime submodules coincide.


2011 ◽  
Vol 10 (03) ◽  
pp. 537-547 ◽  
Author(s):  
SCOTT ANNIN

In the author's work [S. A. Annin, Attached primes over noncommutative rings, J. Pure Appl. Algebra212 (2008) 510–521], a theory of attached prime ideals in noncommutative rings was developed as a natural generalization of the classical notions of attached primes and secondary representations that were first introduced in 1973 as a dual theory to the associated primes and primary decomposition in commutative algebra (see [I. G. Macdonald, Secondary representation of modules over a commutative ring, Sympos. Math.11 (1973) 23–43]). Associated primes over noncommutative rings have been thoroughly studied and developed for a variety of applications, including skew polynomial rings: see [S. A. Annin, Associated primes over skew polynomial rings, Commun. Algebra30(5) (2002) 2511–2528; and S. A. Annin, Associated primes over Ore extension rings, J. Algebra Appl.3(2) (2004) 193–205]. Motivated by this background, the present article addresses the behavior of the attached prime ideals of inverse polynomial modules over skew polynomial rings. The goal is to determine the attached primes of an inverse polynomial module M[x-1] over a skew polynomial ring R[x;σ] in terms of the attached primes of the base module MR. This study was completed in the commutative setting for the class of representable modules in [L. Melkersson, Content and inverse polynomials on artinian modules, Commun. Algebra26(4) (1998) 1141–1145], and the generalization to noncommutative rings turns out to be quite non-trivial in that one must either work with a Bass module MR or a right perfect ring R in order to achieve the desired statement even when no twist is present in the polynomial ring "Let MR be a module over any ring R. If M[x-1]R is a completely σ-compatible Bass module, then Att (M[x-1]S) = {𝔭[x] : 𝔭 ∈ Att (MR)}." The sharpness of the results are illustrated through the use of several illuminating examples.


Sign in / Sign up

Export Citation Format

Share Document