scholarly journals Analytical solutions of some general classes of differential and integral equations by using the Laplace and Fourier transforms

Filomat ◽  
2020 ◽  
Vol 34 (9) ◽  
pp. 2869-2876
Author(s):  
H.M. Srivastava ◽  
Mohammad Masjed-Jamei ◽  
Rabia Aktaş

This article deals with a general class of differential equations and two general classes of integral equations. By using the Laplace transform and the Fourier transform, analytical solutions are derived for each of these classes of differential and integral equations. Some illustrative examples and particular cases are also considered. The various analytical solutions presented in this article are potentially useful in solving the corresponding simpler differential and integral equations.

Geophysics ◽  
1977 ◽  
Vol 42 (7) ◽  
pp. 1384-1393 ◽  
Author(s):  
Anas M. Abo‐Zena

For an elastic material with an infinite circular cylindrical hole, the exact solution due to a pressure on a finite length of the cylinder is obtained as a function of the Laplace transform parameter on time and Fourier transform parameter on the z-coordinate (the axis of the cylinder). The applied pressure is a function of the time and the position z. Numerical inversion of the Laplace and Fourier transforms are required to determine the field quantities in the time and space parameters. In the far field, the inverse Fourier transform can be obtained by an asymptotic expansion. It remains to obtain the inverse Laplace transform numerically. We have found that for cylinders whose radius is small compared with the smallest wavelength of interest, an analytical solution can be obtained. Graphical results for the cases of instantaneous explosion and progression of the detonation with constant velocity are given. In both cases an exponential decay of the explosion pressure is assumed.


Author(s):  
Michael J Corinthios

In this paper, the author uses his recently proposed complex variable generalized distribution theory to expand the domains of existence of bilateral Laplace and z transforms, as well as a whole new class of related transforms. A vast expansion of the domains of existence of bilateral Laplace and z transforms and continuous-time and discrete-time Hilbert, Hartley and Mellin transforms, as well as transforms of multidimensional functions and sequences are obtained. It is noted that the Fourier transform and its applications have advanced by leaps and bounds during the last century, thanks to the introduction of the theory of distributions and, in particular, the concept of the Dirac-delta impulse. Meanwhile, however, the truly two-sided ‘bilateral’ Laplace and z transforms, which are more general than Fourier, remained at a standstill incapable of transforming the most basic of functions. In fact, they were reduced by half to one-sided transforms and received no more than a passing reference in the literature. It is shown that the newly proposed generalized distributions expand the domains of existence and application of Laplace and z transforms similar to and even more extensively than the expansion of the domain of Fourier transform that resulted from the introduction, nearly a century ago, of the theory of distributions and the Dirac-delta impulse. It is also shown that the new generalized distributions put an end to an anomaly that still exists today, which meant that for a large class of basic functions, the Fourier transform exists while the more general Laplace and z transforms do not. The anomaly further manifests itself in the fact that even for the one-sided causal functions, such as the Heaviside unit step function u ( t ) and the sinusoid sin βtu ( t ), the Laplace transform does not exist on the j ω -axis, and the Fourier transform which does exist cannot be deduced thereof by the substitution s =j ω in the Laplace transform, which by definition it should. The extended generalized transforms are well defined for a large class of functions ranging from the most basic to highly complex fast-rising exponential ones that have so far had no transform. Among basic applications, the solution of partial differential equations using the extended generalized transforms is provided. This paper clearly presents and articulates the significant impact of extending the domains of Laplace and z transforms on a large family of related transforms, after nearly a century during which bilateral Laplace and z transforms of even the most basic of functions were undefined, and the domains of definition of related transforms such as Hilbert, Hartley and Mellin transforms were confined to a fraction of the space they can now occupy.


1991 ◽  
Vol 45 (1) ◽  
pp. 59-70 ◽  
Author(s):  
Riccardo Croci

The purpose of this paper is to derive the asymptotic solutions to a class of inhomogeneous integral equations that reduce to algebraic equations when a parameter ε goes to zero (the kernel becoming proportional to a Dirac δ function). This class includes the integral equations obtained from the system of Vlasov and Poisson equations for the Fourier transform in space and the Laplace transform in time of the electrostatic potential, when the equilibrium magnetic field is uniform and the equilibrium plasma density depends on εx, with the co-ordinate z being the direction of the magnetic field. In this case the inhomogeneous term is given by the initial conditions and possibly by sources, and the Laplace-transform variable ω is the eigenvalue parameter.


Geophysics ◽  
1985 ◽  
Vol 50 (4) ◽  
pp. 685-691 ◽  
Author(s):  
J. C. Mareschal

A relationship is derived between the Fourier transform of a potential field at the Earth’s surface and the transform of the inducing source distribution. The Fourier transform of the field is the Laplace transform of the source distribution spectrum when the Laplace transform variable p is equal to the wavenumber. This relationship can be used to determine all possible source distributions compatible with the data. The solution is the superposition of a particular solution to an inhomogeneous problem and of the general solution to the homogeneous problem (i.e., for which the field vanishes at the surface). Source distribution can be expanded into a set of known functions; coefficients of the expansion are determined by solving a system of linear equations. Physical constraints can be introduced to restrict the variation range of the coefficients of expansion. Two examples are presented to illustrate the method: a synthetic gravity profile and a heat flow profile are inverted to determine density or heat source distributions compatible with the data.


2018 ◽  
Vol 21 (3) ◽  
pp. 775-785
Author(s):  
Predrag M. Rajković ◽  
Miomir S. Stanković ◽  
Sladjana D. Marinković

Abstract Based on the easy computation of the direct transform and its inversion, the Laplace transform was used as an effective method for solving differential and integral equations. Its various generalizations appeared in order to be used for treating some new problems. They were based on the generalizations and deformations of the kernel function and of the notion of integral. Here, we expose our generalization of the Laplace transform based on the so-called deformed exponential function of two variables. We point out on some of its properties which hold on in the same or similar manner as in the case of the classical Laplace transform. Relations to a generalized Mittag-Leffler function and to a kind of fractional Riemann-Liouville type integral and derivative are exhibited.


Author(s):  
A Michel ◽  
J-P Boy

Summary Long term deformations strongly depend on the Earth model and its rheological parameters, and in particular its viscosity. We give the general theory and the numerical scheme to compute them for any spherically non rotating isotropic Earth model with linear rheology, either elastic or viscoelastic. Although the Laplace transform is classically used to compute viscoelastic deformation, we choose here instead, to implement the integration with the Fourier transform in order to take advantage of the Fast Fourier Transform algorithm and avoid some of the Laplace transform mathematical difficulties. We describe the methodology to calculate deformations induced by several geophysical signals regardless of whether they are periodic or not, especially by choosing an adapted time sampling for the Fourier transform. As examples, we investigate the sensitivity of the displacements due to long period solid Earth tides, Glacial Isostatic Adjustment (GIA), and present-day ice melting, to anelastic parameters of the mantle. We find that the effects of anelasticity are important for long period deformation and relatively low values of viscosities for both Maxwell and Burgers models. We show that slight modifications in the rheological models could significantly change the amplitude of deformation but also affect the spatial and temporal pattern of the signal to a lesser extent. Especially, we highlight the importance of the mantle anelasticity in the low degrees deformation due to present-day ice melting and encourage its inclusion in future models.


Author(s):  
M. Younus Bhat ◽  
Aamir H. Dar

The linear canonical transform (LCT) provides a unified treatment of the generalized Fourier transforms in the sense that it is an embodiment of several well-known integral transforms including the Fourier transform, fractional Fourier transform, Fresnel transform. Using this fascinating property of LCT, we, in this paper, constructed associated wavelet packets. First, we construct wavelet packets corresponding to nonuniform Multiresolution analysis (MRA) associated with LCT and then those corresponding to vector-valued nonuniform MRA associated with LCT. We investigate their various properties by means of LCT.


Geophysics ◽  
1985 ◽  
Vol 50 (9) ◽  
pp. 1500-1501
Author(s):  
B. N. P. Agarwal ◽  
D. Sita Ramaiah

Bhimasankaram et al. (1977) used Fourier spectrum analysis for a direct approach to the interpretation of gravity anomaly over a finite inclined dike. They derived several equations from the real and imaginary components and from the amplitude and phase spectra to relate various parameters of the dike. Because the width 2b of the dike (Figure 1) appears only in sin (ωb) term—ω being the angular frequency—they determined its value from the minima/zeroes of the amplitude spectra. The theoretical Fourier spectrum uses gravity field data over an infinite distance (length), whereas field observations are available only for a limited distance. Thus, a set of observational data is viewed as a product of infinite‐distance data with an appropriate window function. Usually, a rectangular window of appropriate distance (width) and of unit magnitude is chosen for this purpose. The Fourier transform of the finite‐distance and discrete data is thus represented by convolution operations between Fourier transforms of the infinite‐distance data, the window function, and the comb function. The combined effect gives a smooth, weighted average spectrum. Thus, the Fourier transform of actual observed data may differ substantially from theoretic data. The differences are apparent for low‐ and high‐frequency ranges. As a result, the minima of the amplitude spectra may change considerably, thereby rendering the estimate of the width of the dike unreliable from the roots of the equation sin (ωb) = 0.


Geophysics ◽  
1977 ◽  
Vol 42 (7) ◽  
pp. 1450-1457 ◽  
Author(s):  
Robert D. Regan ◽  
William J. Hinze

The mathematical structure of the Fourier transformations of theoretical gravity anomalies of several geometrically simple bodies appears to have distinct advantages in the interpretation of these anomalies. However, the practical application of this technique is dependent upon the transformation of an observed gravity anomaly of finite length. Ideally, interpretation methods similar to those for the transformations of the theoretical gravity anomalies should be developed for anomalies of a finite length. However, the mathematical complexity of the convolution integrals in the transform calculations of theoretical anomaly segments indicate that no general closed analytical solution useful for interpretation is available. Thus, in order to utilize the Fourier transform interpretation method, the data must be of sufficient length for the finite transform to closely approximate the theoretical transforms.


Sign in / Sign up

Export Citation Format

Share Document