scholarly journals On the numerical computation of cylindrical conductor internal impedance for complex arguments of large magnitude

2017 ◽  
Vol 30 (1) ◽  
pp. 81-91 ◽  
Author(s):  
Slavko Vujevic ◽  
Dino Lovric

In this paper a numerical algorithm for computation of per-unit-length internal impedance of cylindrical conductors under complex arguments of large magnitude is presented. The presented algorithm either numerically solves the scaled exact formula for internal impedance or employs asymptotic approximations of modified Bessel functions when applicable. The formulas presented can be used for computation of per-unit-length internal impedance of solid cylindrical conductors as well as tubular cylindrical conductors.

2020 ◽  
Vol 33 (4) ◽  
pp. 605-616
Author(s):  
Dino Lovric ◽  
Slavko Vujevic ◽  
Ivan Krolo

In this manuscript, a novel method for computation of per-unit-length internal impedance of a cylindrical multilayer conductor with conductive and dielectric layers is presented in detail. In addition to this, formulas for computation of electric and magnetic field distribution throughout the entire multilayer conductor (including dielectric layers) have been derived. The presented formulas for electric and magnetic field in conductive layers have been directly derived from Maxwell equations using modified Bessel functions. However, electric and magnetic field in dielectric layers has been computed indirectly from the electric and magnetic fields in contiguous conductive layers which reduces the total number of unknowns in the system of equations. Displacement currents have been disregarded in both conductive and dielectric layers. This is justifiable if the conductive layers are good conductors. The validity of introducing these approximations is tested in the paper versus a model that takes into account displacement currents in all types of layers.


2003 ◽  
Vol 01 (02) ◽  
pp. 199-212 ◽  
Author(s):  
T. M. DUNSTER

Uniform asymptotic approximations are obtained for the Whittaker's confluent hypergeometric functions Mκ, iμ(z) and Wκ, iμ(z), where κ, μ and z are real. Three cases are considered, and when taken together, result in approximations which are valid for κ → ∞ uniformly for 0 ≤ μ < ∞, 0 < z < ∞, and also for μ → ∞ uniformly for 0 ≤ κ < ∞, 0 < z < ∞. The results are obtained by an application of general asymptotic theories for differential equations either having a coalescing turning point and double pole with complex exponent, or a fixed simple turning point. The resulting approximations achieve a uniform reduction of free variables from three to two, and involve either modified Bessel functions or Airy functions. Explicit error bounds are available for all the approximations.


2012 ◽  
Vol 67 (12) ◽  
pp. 665-673 ◽  
Author(s):  
Kourosh Parand ◽  
Mehran Nikarya ◽  
Jamal Amani Rad ◽  
Fatemeh Baharifard

In this paper, a new numerical algorithm is introduced to solve the Blasius equation, which is a third-order nonlinear ordinary differential equation arising in the problem of two-dimensional steady state laminar viscous flow over a semi-infinite flat plate. The proposed approach is based on the first kind of Bessel functions collocation method. The first kind of Bessel function is an infinite series, defined on ℝ and is convergent for any x ∊ℝ. In this work, we solve the problem on semi-infinite domain without any domain truncation, variable transformation basis functions or transformation of the domain of the problem to a finite domain. This method reduces the solution of a nonlinear problem to the solution of a system of nonlinear algebraic equations. To illustrate the reliability of this method, we compare the numerical results of the present method with some well-known results in order to show the applicability and efficiency of our method.


A theory of Lommel functions is developed, based upon the methods described in the first four papers (I to IV) of this series for replacing the divergent parts of asymptotic expansions by easily calculable series involving one or other of the four ‘basic converging factors’ which were investigated and tabulated in I. This theory is then illustrated by application to the special cases of Struve, modified Struve, Anger and Weber functions, and integrals of ordinary and modified Bessel functions.


2017 ◽  
Vol 72 (1-2) ◽  
pp. 617-632 ◽  
Author(s):  
Dragana Jankov Maširević ◽  
Rakesh K. Parmar ◽  
Tibor K. Pogány

Sign in / Sign up

Export Citation Format

Share Document