scholarly journals Kinetics and mechanism of cetyltrimethylammonium bromide catalyzed oxidation of diethylene glycol by chloramine-T in acidic medium

2003 ◽  
Vol 68 (7) ◽  
pp. 535-542 ◽  
Author(s):  
V.W. Bhagwat ◽  
J. Tiwari ◽  
A. Choube ◽  
B. Pare

The kinetics and mechanism of the C16TABcatalyzed oxidation of diethylene glycol (2,2?-oxydiethanol) by chloramine-T in acidic medium has been studied. The reaction has a first-order dependence on chloramine-T. With excess concentrations of other reactants, the reaction rate follows fractional order kinetics with respect to [diethylene glycol]. The micellar effect due to cetyltrimethylammonium bromide, a cationic surfactant, has been studied. The reaction is catalyzed by chloride ions as well. The small salt effect and increase in the reaction rate with increasing dielectric constant suggest the involvement of neutral molecules in the rate determining step. Addition of p-toluenesulfonamide retards the reaction rate. On the basis of product analysis, a pertinent mechanism is proposed.

2008 ◽  
Vol 5 (4) ◽  
pp. 894-903 ◽  
Author(s):  
Vandana Sharma ◽  
K. V. Sharma ◽  
V. W. Bhagwat

The kinetics and mechanism of cetyltrimethylammonium bromide catalyzed oxidation of triethylene glycol [2,2'-ethylene diqxybis(ethanol)] by chloramine-T in acidic acid medium have been investigated. The reaction is first order dependence on chloramine-T and fractional order for triethylene glycol with excess concentration of other reactants. The catalytic effect due to cetyletrimethylammonium bromide has been studied. The small salt effect and increase in the reaction rate with increasing dielectric constant suggest the involvement of neutral molecule in the rate-determining step. The addition ofp-toluene sulfonamide retards the reaction rate. The effect of chloride ion on the reaction also studied. The effect of temperature on the reaction has been investigated in the temperature range 313-333K and thermodynamic parameters were calculated from the Arrhenious plot. A tentative mechanism consistent with the experimental results has been proposed.


2009 ◽  
Vol 132 (1-2) ◽  
pp. 285-291 ◽  
Author(s):  
Ajaya Kumar Singh ◽  
Reena Negi ◽  
Bhawana Jain ◽  
Yokraj Katre ◽  
Surya P. Singh ◽  
...  

2008 ◽  
Vol 5 (3) ◽  
pp. 598-606
Author(s):  
Vandana Sharma ◽  
K. V. Sharma ◽  
V. W. Bhagwat

The kinetics and mechanism of cetyltrimethylammonium bromide catalyzed oxidation of tetraethylene glycol [2,2'-(oxibis(ethylenoxy)diethanol)] byN-chlorosaccharin in aqueous acetic acid medium in presence of perchloric acid have been investigated at 323K. The reaction is first order dependence on Nchlorosaccharin. The reaction rate follows first order kinetics with respect to [tetraethylene glycol] with excess concentration of other reactants. The miceller effect due to cetyltrimethylammonium bromide, a cationic surfactant has been studied. The change in ionic strength shows negligible salt effect. The dielectric effect is found to be positive. Addition of one of the products (saccharin) retards the reaction rate. Activation parameters are calculated from the Arrhenious plot. A possible mechanism consistent with the experimental results has been proposed.


1972 ◽  
Vol 27 (10) ◽  
pp. 1161-1163 ◽  
Author(s):  
S. P. Mushran ◽  
R. Sanehi ◽  
M. C. Agraval

The Osmium (VIII) catalyzed oxidation of acetone and ethylmethyl ketone by chloramine-T, in highly alkaline solutions showed first order dependence to chloramine-T and osmium (VIII). The order of the reactions with respect to alkali and ketone were found to be fractional, being ~-0.82 and 0.3 respectively. No effects of ionic strength were evident. The mechanism has been proposed on the basis of the formation of a complex between N-chlorotoluene-p-sulfonamide and osmium (VIII) in the slow step, which in turn oxidizes the enol anion of the reducing substrate in the fast step.During the study of the mechanism of oxidations by chloramine-T, the kinetics of the oxidation of α-hydroxy acids 1 in presence of osmium (VIII) as catalyst, glycerol2 in neutral and alkaline media, p-cresol3 in an acidic medium, hexacyanoferrate (II)4 in a feebly acidic medium (pH 6-7) and aliphatic aldehydes 5 in alkaline media have been investigated.Despite the high redox potential6 of the chloramine-T/toluene sulfonamide system (1.138 V at pH 12), the oxidation of acetone does not take place in absence of catalyst and that of ethylmethyl ketone proceeds only in highly alkaline solutions7 (NaOH>0.01 M). In the present note the kinetics of the osmium (VIII) catalyzed oxidation of acetone and ethylmethyl ketone have been recorded.


2020 ◽  
Vol 32 (7) ◽  
pp. 1569-1575
Author(s):  
K.V.S. Koteswara Rao ◽  
R. Venkata Nadh ◽  
K. Venkata Ratnam

Ruthenium(III) catalyzed oxidation of propane-1,3-diol by potassium periodate was studied in aqueous perchloric acid medium. Orders of reaction with respect to concentrations of oxidant, substrate, acid and catalyst were determined. First order in oxidant and catalyst concentrations, and inverse fractional order in acid medium were observed. In addition, substrate inhibition (i.e. a decrease in reaction rate with an increase in substrate concentration) was observed. Effect of addition of salt and solvent was studied. Based on the studies of temperature variation, Arrhenius parameters were calculated. Plausible mechanism was also proposed based on observed kinetics.


Sign in / Sign up

Export Citation Format

Share Document