tetraethylene glycol
Recently Published Documents


TOTAL DOCUMENTS

399
(FIVE YEARS 58)

H-INDEX

32
(FIVE YEARS 5)

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 248
Author(s):  
Nicole Mortensen ◽  
Parker Toews ◽  
Jeffrey Bates

Drug-diffusion kinetics in 2-hydroxyethyl methacrylate hydrogels were studied as a function of the crosslinking density and porosity. By varying the concentration of the crosslinker, tetraethylene glycol dimethacrylate, we demonstrated how the release of Timolol maleate could be optimized to allow for efficient drug delivery. FTIR and spectrophotometry supplied optical inferences into the functional groups present. By studying the swelling and degradation of hydrogels, supplemented with drug-release kinetics studies, the relationship between these two tenets could be formulated.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2512
Author(s):  
Qianjin Guo ◽  
Qiang Liu ◽  
Yixin Zhao

In this work, the effect of molecular cosolvents tetraethylene glycol dimethyl ether (TEGDME) on the structure and versatile nature of mixtures of these compounds with imidazolium-based ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) is analyzed and discussed at a molecular level by means of all-atom molecular dynamics (MD) simulations. In the whole concentration range of the binary mixtures, the structures and properties evolution was studied by means of systematic molecular dynamics simulations of the fraction of hydrogen bonds, the radial and spatial distribution functions for the various molecular ions and molecular species in the system, together with the snapshots visualization of equilibrated simulation boxes with a color-coding scheme and the rotational dynamics of coumarin 153 (C153) in the binary mixtures. The goal of the work is to provide a molecular-level understanding of significant improvement of ionic conductivity and self-diffusion with the presence of TEGDME as a cosolvent, which causes an enhancement to the ion translational motion and fluidity in the [bmim][PF6] ionic liquids (ILs). Under a mixture concentration change, the microstructure changes of [bmim][PF6] with the TEGDME molar fraction (XTEG) above 0.50 show a slight difference from that of neat [bmim][PF6] IL and concentrated [bmim][PF6]/TEGDME mixture in terms of the radial and spatial distribution functions. The relative diffusivities of solvent molecules to cations as a function of concentration were found to depend on the solvent but not on the anion. A TEGDME increase is found to be advantageous to the dissipation of the polar regions as well as the nonpolar regions in the [bmim][PF6] ionic liquids. These conclusions are consistent with the experimental results, which verified that the unique, complex, and versatile nature of [bmim][PF6]/TEGDME mixture can be correctly modeled and discussed at a molecular level using MD simulation data.


Author(s):  
Sergei M. Leschev ◽  
Tatsiana M. Henarava

Currently, there is an increase in the production of carbon nanomaterials in the world, which is associated with their unique physical and mechanical properties and their use in various fields of science, industry and technology. Investigation of the chemical composition of waste gases from a propane-butane mixture pyrolysis unit during the synthesis of carbon nanomaterials is of scientific and applied value, since it allows one to study both the chemistry of the pyrolysis process of hydrocarbon mixtures and determine the degree of toxicity of waste gas from pyrolysis units. The quantitative determination of polycyclic aromatic hydrocarbons in the gaseous products of pyrolysis of a propane-butane mixture during the synthesis of carbon nanomaterials has shown that when sampling with a small amount of the Supelpak-2 adsorbent, which is widely used in international and domestic methods, efficient capture of multinuclear aromatic hydrocarbons is not ensured. Therefore, an important research issue is the development of a simple and effective method for sampling polycyclic aromatic hydrocarbons with their subsequent GC-MS analysis. The principal essence of the technique is the impregnation of two fiberglass filters with an organic low-volatile solvent – diethylene glycol, tetraethylene glycol or dimethyl sulfoxide. The latter is characterised by the highest extracting power in relation to polycyclic aromatic hydrocarbons. The developed technique makes it possible to increase the efficiency of capturing multinuclear aromatic hydrocarbons (with four or more rings in a molecule) to 96–98 % compared to a solid adsorbent under equal conditions (pyrolysis conditions, weight of adsorbent equal with filters impregnated with a solvent), where the degree of their extraction is 1–5 %. The established values of the degree of recovery of the measured components are explained by the high extracting ability of dimethyl sulfoxide in relation to multinuclear aromatic hydrocarbons.


2021 ◽  
pp. 096739112110375
Author(s):  
Fawzi H Jabrail ◽  
Hiba M Awad ◽  
Abdulsalam A Matlob

The wet treatment process was used for the dechlorination of poly(vinyl chloride) (PVC) landfill waste plastic, and the process has shown dependence on concentration of alkali. The process of dechlorination of PVC has shown dependence on the concentration of the alkaline solution and the type of organic solvent used in the preparation of the alkaline solution. Ethylene glycol (EG), diethylene glycol (DEG), and tetraethylene glycol (TEG) are the diols that have been investigated. Moreover, the temperature of the PVC dechlorination process and the time of the PVC solution reflux showed effects on the final degree of the dechlorination (DD%). These were calculated using the Mohr method, where the chloride ions were titrated with a standard solution of silver nitrate in the presence of chromate ions. The study shows that 1 M NaOH/TEG alkaline solution was the best to dechlorinate PVC waste with the wet treatment process at 160 ̊c and for 3 h reflux and the process reclaimed poly(vinyl alcohol) PVA as the main product according to the hydroxyl group substitution mechanism (SN2), besides a few units according to the hydrogen chloride elimination mechanism (E2) with a few remaining chlorinated chains after analysis.


2021 ◽  
Author(s):  
Jack M. Choczynski ◽  
Ravleen Kaur Kohli ◽  
Craig S. Sheldon ◽  
Chelsea L. Price ◽  
James F. Davies

Abstract. Accurate characterization of the water activity and hygroscopicity of aqueous aerosol material allows us to predict the chemical and physical state of aerosol particles exposed to humid conditions in the environment. The hygroscopicity of aerosol determines the size, phase morphology, viscosity, chemical reactivity, and optical properties of constituent particles, and directly impacts their ability to form clouds in the atmosphere. In this work, we describe measurements of hygroscopicity using a linear quadrupole electrodynamic balance (LQ-EDB). We levitate two droplets, one droplet that acts as a relative humidity (RH) probe and one sample droplet, and expose them to controlled environmental conditions. We describe the development of a RH measurement using probe droplets of aqueous NaCl or LiCl, allowing for precise in-situ measurements of RH in the LQ-EDB chamber. We demonstrate that the RH may be determined with an accuracy of 0.5 % at 50 % RH and better than 0.1 % at 90 % RH using NaCl, and show that LiCl is effective at characterizing the RH from ~10 % RH up to ~90 %. We simultaneously measure the response of sample droplets containing aqueous material (including ammonium sulfate, citric acid, 1,2,6-hexanetriol, and tetraethylene glycol) and report hygroscopic growth via their radial growth factors. We use established thermodynamic models to validate the accuracy of the RH probe and to compare with the measured hygroscopicity of the samples. This approach shows significant advantages over other methods for accurately characterizing the hygroscopicity of samples with a range of characteristics, such as high viscosity and vapor pressure.


Sign in / Sign up

Export Citation Format

Share Document